SEARCH

SEARCH BY CITATION

References

  • 1
    Hurley LH. DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2002; 3: 188200.
  • 2
    Druker BJ, Sawyers CL, Kantarjian H et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 10317.
  • 3
    Trauger JW, Baird EE, Dervan PB. Recognition of DNA by designed ligands at subnanomolar concentrations. Nature 1996; 382: 55961.
  • 4
    Wemmer DE, Dervan PB. Targeting the minor groove of DNA. Curr Opin Struct Biol 1997; 7: 35561.
  • 5
    Takahashi I, Takahashi K, Ichimura M et al. Duocarmycin A, a new antitumor antibiotic from streptomyces. J Antibiotics 1988; 41: 191517.
  • 6
    Sugiyama H, Hosoda M, Saito I, Aasi A, Saito H. Covalent alkylation of DNA with duocarmycin A. Identification of abasic site structure. Tetrahedron Lett 1990; 31: 7197200.
  • 7
    Boger DL. The duocarmycins: Synthetic and mechanistic studies. Acc Chem Res 1995; 28: 209.
  • 8
    Boger DL, Munk SA. DNA alkylation properties of enhanced functional analogs of CC-1065 incorporating the 1,2,9,9a–tetrahydrocyclopropa[1, 2-c]benz[1,2-e]indol-4-one (CBI) alkylation subunit. J Am Chem Soc 1992; 114: 548796.
  • 9
    Tao ZF, Fujiwara T, Saito I, Sugiyama H. Rational design of sequence-specific DNA alkylating agents based on duocarmycin A and pyrrole-imidazole hairpin polyamides. J Am Chem Soc 1999; 121: 49617.
  • 10
    Bando T, Narita A, Saito I, Sugiyama H. Molecular design of pyrrole-imidazole hairpin polyamides for effective DNA alkylation. Chem Eur J 2002; 8: 478190.
  • 11
    Bando T, Narita A, Asada K, Ayame H, Sugiyama H. Enantioselective DNA alkylation by a pyrrole-imidazole S-CBI conjugate. J Am Chem Soc 2004; 126: 894855.
  • 12
    Sugiyama H, Lian C, Isomura M, Saito I, Wang AH-J. Distamycin A modulates the sequence specificity of DNA alkylation by duocarmycin A. Proc Natl Acad Sci USA 1996; 93: 14 405–10.
  • 13
    Boger DL, Yun W, Terashima S et al. DNA alkylation properties of the duocarmycins: (+)-duocarmycin A, Epi-(+)-duocarmycin A, Ent-(–)-duocarmycin A and Epi, Ent-(–)-duocarmycin. Bioorg Med Chem Lett 1992; 2: 75965.
  • 14
    Yamori T, Matsunaga A, Sato S et al. Potent antitumor activity of MS-247, a novel DNA minor groove binder, evaluated by an in vitro and in vivo human cancer cell line panel. Cancer Res 1999; 59: 40429.
  • 15
    Dan S, Tsunoda T, Kitahara O et al. An integrated database of chemosensitivity to 55 anticancer drugs and gene expression profiles of 39 human cancer cell lines. Cancer Res 2002; 62: 113947.
  • 16
    William OF. Cancer chemotherapeutic agents. In: Paull KD, Hamel E, Malspeis L, eds. Prediction of Biochemical Mechanism of Action from the In Vitro Antitumor Screen of the National Cancer Institute. ACS Professional Reference Book. Washington, DC: American Chemical Society, 1995; 946.
  • 17
    Oyoshi T, Kawakami W, Narita A, Bando T, Sugiyama H. Inhibition of transcription at a coding sequence by alkylating polyamide. J Am Chem Soc 2003; 125: 47524.
  • 18
    Shinohara K, Narita A, Oyoshi T, Bando T, Teraoka H, Sugiyama H. Sequence-specific gene silencing in mammalian cells by alkylating pyrrole-imidazole polyamides. J Am Chem Soc 2004; 126: 511318.
  • 19
    Bando T, Narita A, Iwai A, Kihara K, Sugiyama H. C–H to N substitution dramatically alters the sequence-specific DNA alkylation, cytotoxicity, and expression of human cancer cell lines. J Am Chem Soc 2004; 126: 34067.