• 1
    Lischwe M, Smetana K, Olson M et al. Protein-C23 and protein-B23 are the major nucleolar silver staining proteins. Life Sci 1979; 25: 7018.
  • 2
    Feuerstein N, Spiegel S, Mond JJ. The nuclear matrix protein, numatrin (B23), is associated with growth factor-induced mitogenesis in Swiss 3T3 fibroblasts and with T lymphocyte proliferation stimulated by lectins and anti-T cell antigen receptor antibody. J Cell Biol 1988; 107: 162942.
  • 3
    Chan W-Y, Liu Q-R, Borjigin J et al. Characterization of the cDNA encoding human nucleophosmin and studies of its role in normal and abnormal growth. Biochemistry 1989; 28: 10339.
  • 4
    Dalenc F, Drouet J, Ader I et al. Increased expression of a COOH-truncated nucleophosmin resulting from alternative splicing is associated with cellular resistance to ionizing radiation in HeLa cells. Int J Cancer 2002; 100: 6628.
  • 5
    International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 2004; 431: 93145.
  • 6
    Wang D, Umekawa H, Olson MO. Expression and subcellular locations of two forms of nucleolar protein B23 in rat tissues and cells. Cell Mol Biol Res 1993; 39: 3342.
  • 7
    Wang W, Budhu A, Forgues M, Wang XW. Temporal and spatial control of nucleophosmin by the Ran–Crm1 complex in centrosome duplication. Nat Cell Biol 2005; 7: 82330.
  • 8
    Morris SW, Xue L, Ma Z, Kinney MC. Alk+ CD30+ lymphomas: a distinct molecular genetic subtype of non-Hodgkin's lymphoma. Br J Haematol 2001; 113: 27595.
  • 9
    Pandolfi PP. PML, PLZF and NPM genes in the molecular pathogenesis of acute promyelocytic leukemia. Haematologica 1996; 81: 47282.
  • 10
    Yoneda-Kato N, Look AT, Kirstein MN et al. The t(3;5) (q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM–MLF1. Oncogene 1996; 12: 26575.
  • 11
    Okuda M. The role of nucleophosmin in centrosome duplication. Oncogene 2002; 21: 61704.
  • 12
    Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG. Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 2002; 4: 52933.
  • 13
    Szebeni A, Herrera JE, Olson MO. Interaction of nucleolar protein B23 with peptides related to nuclear localization signals. Biochemistry 1995; 34: 803742.
  • 14
    Borer RA, Lehner CF, Eppenberger HM, Nigg EA. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 1989; 56: 37990.
  • 15
    Dutta S, Akey IV, Dingwall C et al. The crystal structure of nucleoplasmin-core: implications for histone binding and nucleosome assembly. Mol Cell 2001; 8: 84153.
  • 16
    Huang N, Negi S, Szebeni A, Olson MO. Protein NPM3 interacts with the multifunctional nucleolar protein B23/nucleophosmin and inhibits ribosome biogenesis. J Biol Chem 2005; 280: 5496502.
  • 17
    Kondo T, Minamino N, Nagamura-Inoue T, Matsumoto M, Taniguchi T, Tanaka N. Identification and characterization of nucleophosmin/B23/numatrin which binds the anti-oncogenic transcription factor IRF-1 and manifests oncogenic activity. Oncogene 1997; 15: 127581.
  • 18
    Hsu CY, Yung BY. Over-expression of nucleophosmin/B23 decreases the susceptibility of human leukemia HL-60 cells to retinoic acid-induced differentiation and apoptosis. Int J Cancer 2000; 88: 392400.
  • 19
    Kurki S, Peltonen K, Latonen L et al. Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 2004; 5: 46575.
  • 20
    Sirri V, Roussel P, Gendron MC, Hernandez-Verdun D. Amount of the two major Ag-NOR proteins, nucleolin and protein B23, is cell-cycle dependent. Cytometry 1997; 28: 14756.
  • 21
    Okuda M, Horn HF, Tarapore P et al. Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 2000; 103: 12740.
  • 22
    Okuda M. The role of nucleophosmin in centrosome duplication. Oncogene 2002; 21: 61704.
  • 23
    Cha H, Hancock C, Dangi S, Maiguel D, Carrier F, Shapiro P. Phosphorylation regulates nucleophosmin targeting to the centrosome during mitosis as detected by cross-reactive phosphorylation-specific MKK1/MKK2 antibodies. Biochem J 2004; 378: 85765.
  • 24
    Wu MH, Yung BY. UV stimulation of nucleophosmin/B23 expression is an immediate-early gene response induced by damaged DNA. J Biol Chem 2002; 277: 48 234–40.
  • 25
    Zhang Y, Xiong Y. Control of p53 ubiquitination and nuclear export by MDM2 and ARF. Cell Growth Diff 2001; 12: 17586.
  • 26
    Brady SN, Yu Y, Maggi LB Jr, Weber JD. ARF impedes NPM/B23 shuttling in an Mdm2-sensitive tumor suppressor pathway. Mol Cell Biol 2004; 24: 932738.
  • 27
    Bertwistle D, Sugimoto M, Sherr CJ. Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol Cell Biol 2004; 24: 98596.
  • 28
    Korgaonkar C, Hagen J, Tompkins V et al. Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function. Mol Cell Biol 2005; 25: 125871.
  • 29
    Colombo E, Bonetti P, Lazzerini Denchi E et al. Nucleophosmin is required for DNA integrity and p19Arf protein stability. Mol Cell Biol 2005; 25: 887486.
  • 30
    Grisendi S, Bernardi R, Rossi M et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature 2005; 437: 14753.
  • 31
    Sugimoto M, Kuo ML, Roussel MF, Sherr CJ. Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing. Mol Cell 2003; 11: 41524.
  • 32
    Itahana K, Bhat KP, Jin A et al. Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cell 2003; 12: 115164.
  • 33
    Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. Pathology and Genetics of Tumors of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press, 2001.
  • 34
    Duyster J, Bai RY, Morris SW. Translocations involving anaplastic lymphoma kinase (ALK). Oncogene 2001; 20: 562337.
  • 35
    Morris SW, Kirstein MN, Valentine MB et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 1994; 263: 12814.
  • 36
    Pulford K, Lamant L, Espinos E et al. The emerging normal and disease-related roles of anaplastic lymphoma kinase. Cell Mol Life Sci 2004; 61: 293953.
  • 37
    Slupianek A, Nieborowska-Skorska M, Hoser G et al. Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis. Cancer Res 2001; 61: 21949.
  • 38
    Ruchatz H, Coluccia AM, Stano P, Marchesi E, Gambacorti-Passerini C. Constitutive activation of Jak2 contributes to proliferation and resistance to apoptosis in NPM/ALK-transformed cells. Exp Hematol 2003; 31: 30915.
  • 39
    Turner SD, Alexander DR. What have we learnt from mouse models of NPM–ALK-induced lymphomagenesis? Leukemia 2005; 19: 112834.
  • 40
    Stein H, Foss HD, Durkop H et al. CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood 2000; 96: 368195.
  • 41
    Horie R, Watanabe T, Morishita Y et al. Ligand-independent signaling by overexpressed CD30 drives NF-κB activation in Hodgkin–Reed–Sternberg cells. Oncogene 2002; 21: 2493503.
  • 42
    Horie R, Watanabe M, Ishida T et al. The NPM–ALK oncoprotein abrogates CD30 signaling and constitutive NF-κB activation in anaplastic large cell lymphoma. Cancer Cell 2004; 5: 35364.
  • 43
    Cordell JL, Pulford KA, Bigerna B et al. Detection of normal and chimeric nucleophosmin in human cells. Blood 1999; 93: 63242.
  • 44
    Drexler HG, Gignac SM, Von Wasielewski R, Werner M, Dirks WG. Pathobiology of NPM–ALK and variant fusion genes in anaplastic large cell lymphoma and other lymphomas. Leukemia 2000; 14: 153359.
  • 45
    Piazza F, Gurrieri C, Pandolfi PP. The theory of APL. Oncogene 2001; 20: 721622.
  • 46
    Zelent A, Guidez F, Melnick A, Waxman S, Licht JD. Translocations of the RARα gene in acute promyelocytic leukemia. Oncogene 2001; 20: 7186203.
  • 47
    Grimwade D, Biondi A, Mozziconacci MJ et al. Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): results of the European Working Party. Blood 2000; 96: 1297308.
  • 48
    Corey SJ, Locker J, Oliveri DR et al. A non-classical translocation involving 17q12 (retinoic acid receptor α) in acute promyelocytic leukemia (APML) with atypical features. Leukemia 1994; 8: 13503.
  • 49
    Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin–retinoic acid receptor fusion. Blood 1996; 87: 8826.
  • 50
    Redner RL, Corey SJ, Rush EA. Differentiation of t(5;17) variant acute promyelocytic leukemic blasts by all-trans retinoic acid. Leukemia 1997; 11: 101416.
  • 51
    Redner RL, Chen JD, Rush EA, Li H, Pollock SL. The t(5;17) acute promyelocytic leukemia fusion protein NPM–RAR interacts with co-repressor and co-activator proteins and exhibits both positive and negative transcriptional properties. Blood 2000; 95: 268390.
  • 52
    Sternsdorf T, Phan VT, Maunakea ML et al. Forced retinoic acid receptor α homodimers prime mice for APL-like leukemia. Cancer Cell 2006; 9: 8194.
  • 53
    Cheng GX, Zhu XH, Men XQ et al. Distinct leukemia phenotypes in transgenic mice and different corepressor interactions generated by promyelocytic leukemia variant fusion genes PLZF–RARα and NPM–RARα. Proc Natl Acad Sci USA 1999; 96: 631823.
  • 54
    Dyck JA, Maul GG, Miller WH Jr, Chen JD, Kakizuka A, Evans RM. A novel macromolecular structure is a target of the promyelocyte–retinoic acid receptor oncoprotein. Cell 1994; 76: 33343.
  • 55
    Raelson JV, Nervi C, Rosenauer A et al. The PML/RARα oncoprotein is a direct molecular target of retinoic acid in acute promyelocytic leukemia cells. Blood 1996; 88: 282632.
  • 56
    Yoshida H, Kitamura K, Tanaka K et al. Accelerated degradation of PML–retinoic acid receptor alpha (PML–RARA) oncoprotein by all-trans-retinoic acid in acute promyelocytic leukemia: possible role of the proteasome pathway. Cancer Res 1996; 56: 29458.
  • 57
    Rush EA, Schlesinger KW, Watkins SC, Redner RL. The NPM–RAR fusion protein associated with the t(5;17) variant of APL does not interact with PML. Leuk Res 2006; 30: 97986.
  • 58
    Winteringham LN, Kobelke S, Williams JH, Ingley E, Klinken SP. Myeloid leukemia factor 1 inhibits erythropoietin-induced differentiation, cell cycle exit and p27Kip1 accumulation. Oncogene 2004; 23: 51059.
  • 59
    Hanissian SH, Akbar U, Teng B et al. cDNA cloning and characterization of a novel gene encoding the MLF1-interacting protein MLF1IP. Oncogene 2004; 23: 37007.
  • 60
    Falini B, Bigerna B, Pucciarini A et al. Aberrant subcellular expression of nucleophosmin and NPM–MLF1 fusion protein in acute myeloid leukaemia carrying t(3;5): a comparison with NPMc+ AML. Leukemia 2006; 20: 36871.
  • 61
    Falini B, Mecucci C, Tiacci E et al. Gimema Acute Leukemia Working Party. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005; 352: 25466.
  • 62
    Nakagawa M, Kameoka Y, Suzuki R. Nucleophosmin in acute myelogenous leukemia. N Engl J Med 2005; 352: 181920.
  • 63
    Falini B, Bolli N, Shan J et al. Both carboxy-terminus NES motif and mutated tryptophan(s) are crucial for aberrant nuclear export of nucleophosmin leukemic mutants in NPMc+ AML. Blood 2006; 107: 451423.
  • 64
    Grisendi S, Pandolfi PP. NPM mutations in acute myelogenous leukemia. N Engl J Med 2005; 352: 2912.
  • 65
    Suzuki T, Kiyoi H, Ozeki K et al. Clinical characteristics and prognostic implications of NPM1 mutations in acute myeloid leukemia. Blood 2005; 106: 285461.
  • 66
    Schnittger S, Schoch C, Kern W et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 2005; 106: 37339.
  • 67
    Roel GWV, Chantal SG, Wim van P et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 2005; 106: 374754.
  • 68
    Konstanze D, Richard FS, Marianne H et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood 2005; 106: 37406.
  • 69
    Christian T, Sina K, Eva C et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML) Blood 2006; 107: 401120.
  • 70
    Boissel N, Renneville A, Biggio V et al. Prevalence, clinical profile, and prognosis of NPM mutations in AML with normal karyotype. Blood 2005; 106: 361820.
  • 71
    Umekawa H, Sato K, Takemura M et al. The carboxyl terminal sequence of nucleolar protein B23.1 is important in its DNA polymerase α-stimulatory activity. J Biochem (Tokyo) 2001; 130: 199205.
  • 72
    Berger R, Busson M, Baranger L et al. Loss of the NPM1 gene in myeloid disorders with chromosome 5 rearrangements. Leukemia 2006; 20: 31921.
  • 73
    Namboodiri VM, Akey IV, Schmidt-Zachmann MS, Head JF, Akey CW. The structure and function of Xenopus NO38-core, a histone chaperone in the nucleolus. Structure 2004; 12: 214960.