• 1
    Old LJ. Cancer immunology: the search for specificity − G. H. A. Clowes memorial lecture. Cancer Res 1981; 41: 36175.
  • 2
    Rosenberg SA. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 1999; 10: 2817.
  • 3
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002; 3: 9918.
  • 4
    Rahemtulla A, Fung-Leung WP, Schilham MW et al. Normal development and function of CD8+ cells but markedly decreased helper cell activity in mice lacking CD4. Nature 1991; 353: 1804.
  • 5
    Keene JA, Forman J. Helper activity is required for the in vivo generation of cytotoxic T lymphocytes. J Exp Med 1982; 155: 76882.
  • 6
    Husmann LA, Bevan MJ. Cooperation between helper T cells and cytotoxic T lymphocyte precursors. Ann NY Acad Sci 1988; 532: 15869.
  • 7
    Kirberg J, Bruno L, Von Boehmer H. CD4+8 help prevents rapid deletion of CD8+ cells after a transient response to antigen. Eur J Immunol 1993; 23: 19637.
  • 8
    Cardin RD, Brooks JW, Sarawar SR, Doherty PC. Progressive loss of CD8+ T cell-mediated control of a γ-herpesvirus in the absence of CD4+ T cells. J Exp Med 1996; 184: 86371.
  • 9
    Von Herrath MG, Yokoyama M, Dockter J, Oldstone MB, Whitton JL. CD4-deficient mice have reduced levels of memory cytotoxic T lymphocytes after immunization and show diminished resistance to subsequent virus challenge. J Virol 1996; 70: 10729.
  • 10
    Topalian SL. MHC class II restricted tumor antigens and the role of CD4+ T cells in cancer immunotherapy. Curr Opin Immunol 1994; 6: 7415.
  • 11
    Bennett SR, Carbone FR, Karamalis F, Miller JF, Heath WR. Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J Exp Med 1997; 186: 6570.
  • 12
    Lu Z, Yuan L, Zhou X, Sotomayor E, Levitsky HI, Pardoll DM. CD40-independent pathways of T cell help for priming of CD8+ cytotoxic T lymphocytes. J Exp Med 2000; 191: 54150.
  • 13
    Smith CM, Wilson NS, Waithman J et al. Cognate CD4+ T cell licensing of dendritic cells in CD8+ T cell immunity. Nat Immunol 2004; 5: 11438.
  • 14
    Bourgeois C, Rocha B, Tanchot C. A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science 2002; 297: 20603.
  • 15
    Janssen EM, Lemmens EE, Wolfe T, Christen U, Von Herrath MG, Schoenberger SP. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 2003; 421: 8526.
  • 16
    Sun JC, Bevan MJ. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 2003; 300: 33942.
  • 17
    Sun JC, Williams MA, Bevan MJ. CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 2004; 5: 92733.
  • 18
    Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR. Help for cytotoxic-T-cell responses is mediated by CD40 signaling. Nature 1998; 393: 47880.
  • 19
    Schoenberger SP, Toes RE, Van Der Voort EI, Offringa R, Melief CJ. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 1998; 393: 4803.
  • 20
    Ridge JP, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 1998; 393: 4748.
  • 21
    Giuntoli RL, Lu J, Kobayashi H, Kennedy R, Celis E. Direct costimulation of tumor-reactive CTL by helper T cells potentiates their proliferation, survival, and effector function. Clin Cancer Res 2002; 8: 92231.
  • 22
    Sakaguchi S, Sakaguchi N, Shimizu J et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 2001; 182: 1832.
  • 23
    Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003; 3: 13346.
  • 24
    Nishimura T, Nakui M, Sato M et al. The critical role of Th1-dominant immunity in tumor immunology. Cancer Chemother Pharmacol 2000; 46: S5261.
  • 25
    Chamoto K, Kosaka A, Tsuji T et al. Critical role of the Th1/Tc1 circuit for the generation of tumor-specific CTL during tumor eradication in vivo by Th1-cell therapy. Cancer Sci 2003; 94: 9248.
  • 26
    Nishimura T, Iwakabe K, Sekimoto M et al. Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J Exp Med 1999; 190: 61727.
  • 27
    Ikeda H, Chamoto K, Tsuji T et al. The critical role of type-1 innate and acquired immunity in tumor immunotherapy. Cancer Sci 2004; 95: 697703.
  • 28
    Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 1989; 86: 10 024–8.
  • 29
    Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and γ or ζ subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 1993; 90: 7204.
  • 30
    Gyobu H, Tsuji T, Suzuki Y et al. Generation and targeting of human tumor-specific Tc1 and Th1 cells transduced with a lentivirus containing a chimeric immunoglobulin T-cell receptor. Cancer Res 2004; 64: 14905.
  • 31
    Khong HT, Restifo NP. Natural selection of tumor variants in the generation of ‘tumor escape’ phenotypes. Nat Immunol 2002; 3: 9991005.
  • 32
    Yang Y, Huang CT, Huang X, Pardoll DM. Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat Immunol 2004; 5: 50815.
  • 33
    Curiel TJ, Coukos G, Zou L et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 9001.
  • 34
    Toi M, Taniguchi T, Yamamoto Y, Kurisaki T, Suzuki H, Tominaga T. Clinical significance of the determination of angiogenic factors. Eur J Cancer 1996; 32A: 251319.
  • 35
    Sharma S, Stolina M, Lin Y et al. T cell-derived IL-10 promotes lung cancer growth by suppressing both T cell and APC function. J Immunol 1999; 163: 50208.
  • 36
    Yue FY, Dummer R, Geertsen R et al. Interleukin-10 is a growth factor for human melanoma cells and down-regulates HLA class-I, HLA class-II and ICAM-1 molecules. Int J Cancer 1997; 71: 6307.
  • 37
    Tada T, Ohzeki S, Utsumi K et al. Transforming growth factor-β-induced inhibition of T cell function. Susceptibility difference in T cells of various phenotypes and functions and its relevance to immunosuppression in the tumor-bearing state. J Immunol 1991; 146: 107782.
  • 38
    Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 2000; 74: 181273.
  • 39
    Seliger B, Maeurer MJ, Ferrone S. Antigen-processing machinery breakdown and tumor growth. Immunol Today 2000; 21: 45564.
  • 40
    Garrido F, Algarra I. MHC antigens and tumor escape from immune surveillance. Adv Cancer Res 2001; 83: 11758.
  • 41
    Mizoguchi H, O'Shea JJ, Longo DL, Loeffler CM, McVicar DW, Ochoa AC. Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science 1992; 258: 17958.
  • 42
    Otsuji M, Kimura Y, Aoe T, Okamoto Y, Saito T. Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 z chain of T-cell receptor complex and antigen-specific T-cell responses. Proc Natl Acad Sci USA 1996; 93: 13 119–24.
  • 43
    Bukowski RM, Rayman P, Uzzo R et al. Signal transduction abnormalities in T lymphocytes from patients with advanced renal carcinoma: clinical relevance and effects of cytokine therapy. Clin Cancer Res 1998; 4: 233747.
  • 44
    Lobashevsky A, Senkbeil RW, Townsend JE et al. HLA-A,B,DR loci molecular typing using fluorescence PCR-SSO luminex methodology. Hum Immunol 2002; 63 (Suppl. 10): S91.
  • 45
    Osada M, D’Ambrose M, Balazs I. Validation studies on the use of SSOP DNA typing of HLA-C alleles with the luminex flow cytometer. Hum Immunol 2002; 63 (Suppl. 10): S39.
  • 46
    Khare PD, Shao-Xi L, Kuroki M et al. Specifically targeted killing of carcinoembryonic antigen (CEA)-expressing cells by a retroviral vector displaying single-chain variable fragmented antibody to CEA and carrying the gene for inducible nitric oxide synthase. Cancer Res 2001; 61: 3705.
  • 47
    Arakawa F, Shibaguchi H, Xu Z, Kuroki M. Targeting of T cells to CEA-expressing tumor cells by chimeric immune receptors with a highly specific single-chain anti-CEA activity. Anticancer Res 2002; 22: 428590.
  • 48
    Ueno T, Fujiwara M, Tomiyama H, Onodera M, Takiguchi M. Reconstitution of anti-HIV effector functions of primary human CD8 T lymphocytes by transfer of HIV-specific αβ TCR genes. Eur J Immunol 2004; 34: 337988.
  • 49
    Miyoshi H, Smith KA, Mosier DE, Verma IM, Torbett BE. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 1999; 283: 6826.
  • 50
    Nishimura T, Burakoff SJ, Herrmann SH. Protein kinase C required for cytotoxic T lymphocyte triggering. J Immunol 1987; 139: 288891.
  • 51
    Pittet MJ, Speiser DE, Lienard D et al. Expansion and functional maturation of human tumor antigen-specific CD8+ T cells after vaccination with antigenic peptide. Clin Cancer Res 2001; 7: 796S803S.
  • 52
    Valmori D, Dutoit V, Lienard D et al. Naturally occurring human lymphocyte antigen-A2 restricted CD8+ T-cell response to the cancer testis antigen NY-ESO-1 in melanoma patients. Cancer Res 2000; 60: 4499506.
  • 53
    Schuler-Thurner B, Schultz ES, Berger TG et al. Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med 2002; 195: 127988.
  • 54
    Khong HT, Restifo NP. Natural selection of tumor variants in the generation of ‘tumor escape’ phenotypes. Nat Immunol 2002; 3: 9991005.
  • 55
    Hombach A, Schlimper C, Sievers E et al. A recombinant anti-CEA immunoreceptor with combined CD3zeta–CD28 signaling targets T cells from colorectal cancer patients against their tumour cells. Gut 2005; Dec 2; [Epub ahead of print].
  • 56
    Sheen AJ, Irlam J, Kirillova N et al. Gene therapy of patient-derived T lymphocytes to target and eradicate colorectal hepatic metastases. Dis Colon Rectum 2003; 46: 793804.
  • 57
    Hombach A, Muche JM, Gerken M et al. T cells engrafted with a recombinant anti-CD30 receptor target autologous CD30+ cutaneous lymphoma cells. Gene Ther 2001; 8: 8915.
  • 58
    Eshhar Z, Bach N, Fitzer-Attas CJ et al. The T-body approach: potential for cancer immunotherapy. Springer Semin Immunopathol 1996; 18: 199209.
  • 59
    Gross G, Levy S, Levy R, Waks T, Eshhar Z. Chimeric T-cell receptors specific to a B-lymphoma idiotype: a model for tumour immunotherapy. Biochem Soc Trans 1995; 23: 107982.
  • 60
    Hombach A, Koch D, Sircar R et al. A chimeric receptor that selectively targets membrane-bound carcinoembryonic antigen (mCEA) in the presence of soluble CEA. Gene Ther 1999; 6: 3004.