SEARCH

SEARCH BY CITATION

References

  • 1
    Powell SM, Zilz N, Beazer-Barclay Y et al. APC mutations occur early during colorectal tumorigenesis. Nature 1992; 359, 2357.
  • 2
    Moser AR, Pitot HC, Dove WF. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 1990; 247, 3224.
  • 3
    Su LK, Kinzler KW, Vogelstein B et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 1992; 256, 66870.
  • 4
    Luongo C, Moser AR, Gledhill S, Dove WF. Loss of Apc+ in intestinal adenomas from Min mice. Cancer Res 1994; 54, 594752.
  • 5
    Oshima M, Oshima H, Kitagawa K, Kobayashi M, Itakura C, Taketo M. Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc Natl Acad Sci USA 1995; 92, 44826.
  • 6
    Shibata H, Toyama K, Shioya H et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 1997; 278, 1203.
  • 7
    Smits R, Kielman MF, Breukel C et al. Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev 1999; 13, 130921.
  • 8
    Oshima M, Dinchuk JE, Kargman SL et al. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 1996; 87, 8039.
  • 9
    Hong KH, Bonventre JC, O’Leary E, Bonventre JV, Lander ES. Deletion of cytosolic phospholipase A(2) suppresses Apc(Min)-induced tumorigenesis. Proc Natl Acad Sci USA 2001; 98, 39359.
  • 10
    Seno H, Oshima M, Ishikawa TO et al. Cyclooxygenase 2- and prostaglandin E(2) receptor EP(2)-dependent angiogenesis in Apc(Delta716) mouse intestinal polyps. Cancer Res 2002; 62, 50611.
  • 11
    Sonoshita M, Takaku K, Sasaki N et al. Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apc(Delta716) knockout mice. Nat Med 2001; 7, 104851.
  • 12
    Edelmann W, Yang K, Kuraguchi M et al. Tumorigenesis in Mlh1 and Mlh1/Apc1638N mutant mice. Cancer Res 1999; 59, 13017.
  • 13
    Kuraguchi M, Yang K, Wong E et al. The distinct spectra of tumor-associated Apc mutations in mismatch repair-deficient Apc1638N mice define the roles of MSH3 and MSH6 in DNA repair and intestinal tumorigenesis. Cancer Res 2001; 61, 793442.
  • 14
    Porter EM, Bevins CL, Ghosh D, Ganz T. The multifaceted Paneth cell. Cell Mol Life Sci 2002; 59, 15670.
  • 15
    Rao CV, Yang YM, Swamy MV et al. Colonic tumorigenesis in BubR1+/-ApcMin/+ compound mutant mice is linked to premature separation of sister chromatids and enhanced genomic instability. Proc Natl Acad Sci USA 2005; 102, 436570.
  • 16
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61, 75967.
  • 17
    Morin PJ, Sparks AB, Korinek V et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 1997; 275, 178790.
  • 18
    Yamada Y, Yoshimi N, Hirose Y et al. Frequent beta-catenin gene mutations and accumulations of the protein in the putative preneoplastic lesions lacking macroscopic aberrant crypt foci appearance, in rat colon carcinogenesis. Cancer Res 2000; 60, 33237.
  • 19
    Yamada Y, Yoshimi N, Hirose Y et al. Sequential analysis of morphological and biological properties of beta-catenin-accumulated crypts, provable premalignant lesions independent of aberrant crypt foci in rat colon carcinogenesis. Cancer Res 2001; 61, 18748.
  • 20
    Yamada Y, Oyama T, Hirose Y et al. beta-Catenin mutation is selected during malignant transformation in colon carcinogenesis. Carcinogenesis 2003; 24, 917.
  • 21
    Yamada Y, Mori H. Pre-cancerous lesions for colorectal cancers in rodents: a new concept. Carcinogenesis 2003; 24, 101519.
  • 22
    Yamada Y, Hata K, Hirose Y et al. Microadenomatous lesions involving loss of Apc heterozygosity in the colon of adult Apc(Min/+) mice. Cancer Res 2002; 62, 636770.
  • 23
    Knudson AG, Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971; 68, 8203.
  • 24
    Bird RP, McLellan EA, Bruce WR. Aberrant crypts, putative precancerous lesions, in the study of the role of diet in the aetiology of colon cancer. Cancer Surv 1989; 8, 189200.
  • 25
    Bird RP. Role of aberrant crypt foci in understanding the pathogenesis of colon cancer. Cancer Lett 1995; 93, 5571.
  • 26
    Kawabata K, Tanaka T, Murakami T et al. Dietary prevention of azoxymethane-induced colon carcinogenesis with rice-germ in F344 rats. Carcinogenesis 1999; 20, 210915.
  • 27
    Tanaka T, Kawabata K, Honjo S et al. Inhibition of azoxymethane-induced aberrant crypt foci in rats by natural compounds, caffeine, quercetin and morin. Oncol Rep 1999; 6, 133340.
  • 28
    Rao CV, Wang CX, Simi B et al. Enhancement of experimental colon cancer by genistein. Cancer Res 1997; 57, 371722.
  • 29
    Zheng Y, Kramer PM, Lubet RA, Steele VE, Kelloff GJ, Pereira MA. Effect of retinoids on AOM-induced colon cancer in rats: modulation of cell proliferation, apoptosis and aberrant crypt foci. Carcinogenesis 1999; 20, 25560.
  • 30
    Paulsen JE, Steffensen IL, Loberg EM, Husoy T, Namork E, Alexander J. Qualitative and quantitative relationship between dysplastic aberrant crypt foci and tumorigenesis in the Min/+ mouse colon. Cancer Res 2001; 61, 501015.
  • 31
    Pretlow TP, Pretlow TG. Mutant KRAS in aberrant crypt foci (ACF): initiation of colorectal cancer? Biochim Biophys Acta 2005; 1756, 8396.
  • 32
    Johnson L, Mercer K, Greenbaum D et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 2001; 410, 111116.
  • 33
    Brabletz T, Herrmann K, Jung A, Faller G, Kirchner T. Expression of nuclear beta-catenin and c-myc is correlated with tumor size but not with proliferative activity of colorectal adenomas. Am J Pathol 2000; 156, 86570.
  • 34
    Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell 2004; 116, 76978.
  • 35
    Orimo A, Gupta PB, Sgroi DC et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005; 121, 33548.
  • 36
    Sonoshita M, Takaku K, Oshima M, Sugihara K, Taketo MM. Cyclooxygenase-2 expression in fibroblasts and endothelial cells of intestinal polyps. Cancer Res 2002; 62, 68469.
  • 37
    Reddy BS, Hirose Y, Lubet R et al. Chemoprevention of colon cancer by specific cyclooxygenase-2 inhibitor, celecoxib, administered during different stages of carcinogenesis. Cancer Res 2000; 60, 2937.
  • 38
    Berg DJ, Davidson N, Kuhn R et al. Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J Clin Invest 1996; 98, 101020.
  • 39
    Tanaka T, Kohno H, Suzuki R et al. Dextran sodium sulfate strongly promotes colorectal carcinogenesis in Apc(Min/+) mice: inflammatory stimuli by dextran sodium sulfate results in development of multiple colonic neoplasms. Int J Cancer 2006; 118, 2534.
  • 40
    Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002; 3, 41528.
  • 41
    Feinberg AP, Gehrke CW, Kuo KC, Ehrlich M. Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res 1988; 48, 115961.
  • 42
    Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983; 301, 8992.
  • 43
    Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992; 69, 91526.
  • 44
    Jackson-Grusby L, Beard C, Possemato R et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat Genet 2001; 27, 319.
  • 45
    Gaudet F, Hodgson JG, Eden A et al. Induction of tumors in mice by genomic hypomethylation. Science 2003; 300, 48992.
  • 46
    Yamada Y, Jackson-Grusby L, Linhart H et al. Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proc Natl Acad Sci USA 2005; 102, 135805.
  • 47
    Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R. DNA hypomethylation leads to elevated mutation rates. Nature 1998; 395, 8993.
  • 48
    Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 2003; 300, 455.
  • 49
    Lin H, Yamada Y, Nguyen S et al. Suppression of intestinal neoplasia by deletion of Dnmt3b. Mol Cell Biol 2006; 26, 297683.
  • 50
    Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 1999; 96, 86816.
  • 51
    Okochi-Takada E, Nakazawa K, Wakabayashi M et al. Silencing of the UCHL1 gene in human colorectal and ovarian cancers. Int J Cancer 2006; 119, 133844.
  • 52
    Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99, 24757.
  • 53
    Eads CA, Nickel AE, Laird PW. Complete genetic suppression of polyp formation and reduction of CpG-island hypermethylation in Apc(Min/+) Dnmt1-hypomorphic Mice. Cancer Res 2002; 62, 12969.
  • 54
    Sansom OJ, Berger J, Bishop SM, Hendrich B, Bird A, Clarke AR. Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nat Genet 2003; 34, 1457.
  • 55
    Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003; 33 Suppl, 24554.
  • 56
    Boivin GP, Washington K, Yang K et al. Pathology of mouse models of intestinal cancer: consensus report and recommendations. Gastroenterology 2003; 124, 76277.
  • 57
    Halberg RB, Katzung DS, Hoff PD et al. Tumorigenesis in the multiple intestinal neoplasia mouse: redundancy of negative regulators and specificity of modifiers. Proc Natl Acad Sci USA 2000; 97, 34616.
  • 58
    Takaku K, Oshima M, Miyoshi H, Matsui M, Seldin MF, Taketo MM. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 1998; 92, 64556.
  • 59
    Batlle E, Bacani J, Begthel H et al. EphB receptor activity suppresses colorectal cancer progression. Nature 2005; 435, 112630.
  • 60
    Rangarajan A, Hong SJ, Gifford A, Weinberg RA. Species- and cell type-specific requirements for cellular transformation. Cancer Cell 2004; 6, 17183.