SEARCH

SEARCH BY CITATION

References

  • 1
    Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 2002; 3: 38394.
  • 2
    Manie S, Santoro M, Fusco A, Billaud M. The RET receptor: function in development and dysfunction in congenital malformation. Trends Genet 2001; 17: 5809.
  • 3
    Ichihara M, Murakumo Y, Takahashi M. RET and neuroendocrine tumors. Cancer Lett 2004; 204: 197211.
  • 4
    Kodama Y, Asai N, Jijiwa M, Murakumo Y, Ichihara M, Takahashi M. The RET proto-oncogene: a molecular therapeutic target in thyroid cancer. Cancer Sci 2005; 96: 1438.
  • 5
    Asai1 N, Jijiwa M, Enomoto A et al. RET receptor signaling: dysfunction in thyroid cancer and Hirschsprung's disease. Pathol Int 2006; 56: 16472.
  • 6
    Besset V, Scott RP, Ibanez CF. Signaling complexes and protein–protein interactions involved in the activation of the Ras and phosphatidylinositol 3-kinase pathways by the c-Ret receptor tyrosine kinase. J Biol Chem 2000; 275: 39 159–66.
  • 7
    Hayashi H, Ichihara M, Iwashita T et al. Characterization of intracellular signals via tyrosine 1062 in RET activated by glial cell line-derived neurotrophic factor. Oncogene 2000; 19: 446975.
  • 8
    Segouffin-Cariou C, Billaud M. Transforming ability of MEN2A-RET requires activation of the phosphatidylinositol 3-kinase/AKT signaling pathway. J Biol Chem 2000; 275: 356876.
  • 9
    Borrello MG, Alberti L, Arighi E et al. The full oncogenic activity of Ret/ptc2 depends on tyrosine 539, a docking site for phospholipase Cgamma. Mol Cell Biol 1996; 16: 215163.
  • 10
    Hayashi Y, Iwashita T, Murakami H et al. Activation of BMK1 via tyrosine 1062 in RET by GDNF and MEN2A mutation. Biochem Biophys Res Commun 2001; 281: 6829.
  • 11
    Fukuda T, Kiuchi K, Takahashi M. Novel mechanism of regulation of Rac activity and lamellipodia formation by RET tyrosine kinase. J Biol Chem 2002; 277: 19 114–21.
  • 12
    Fukuda T, Asai N, Enomoto A, Takahashi M. Activation of c-Jun amino-terminal kinase by GDNF induces G2/M cell cycle delay linked with actin reorganization. Genes Cells 2005; 10: 65563.
  • 13
    Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 1994; 367: 3803.
  • 14
    Moore MW, Klein RD, Farinas I et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature 1996; 382: 769.
  • 15
    Pichel JG, Shen L, Sheng HZ et al. GDNF is required for kidney development and enteric innervation. Cold Spring Harb Symp Quant Biol 1996; 61: 44557.
  • 16
    Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 1996; 382: 703.
  • 17
    Meng X, Lindahl M, Hyvonen ME et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 2000; 287: 148993.
  • 18
    Takahashi M. The GDNF/RET signaling pathway and human diseases. Cytokine Growth Factor Rev 2001; 12: 36173.
  • 19
    Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow MA. Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 1998; 92: 25363.
  • 20
    Reich A, Sapir A, Shilo B. Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development 1999; 126: 413947.
  • 21
    Mason JM, Morrison DJ, Basson MA, Licht JD. Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol 2006; 16: 4554.
  • 22
    Lee SH, Schloss DJ, Jarvis L, Krasnow MA, Swain JL. Inhibition of angiogenesis by a mouse sprouty protein. J Biol Chem 2001; 276: 412833.
  • 23
    Impagnatiello MA, Weitzer S, Gannon G, Compagni A, Cotten M, Christofori G. Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J Cell Biol 2001; 152: 108798.
  • 24
    Taketomi T, Yoshiga D, Taniguchi K et al. Loss of mammalian Sprouty2 leads to enteric neuronal hyperplasia and esophageal achalasia. Nat Neurosci 2005; 8: 8557.
  • 25
    Sasaki A, Taketomi T, Wakioka T, Kato R, Yoshimura A. Identification of a dominant negative mutant of Sprouty that potentiates fibroblast growth factor- but not epidermal growth factor-induced ERK activation. J Biol Chem 2001; 276: 36 804–8.
  • 26
    Asai N, Murakami H, Iwashita T, Takahashi M. A mutation at tyrosine 1062 in MEN2A-Ret and MEN2B-Ret impairs their transforming activity and association with Shc adaptor proteins. J Biol Chem 1996; 271: 17 644–9.
  • 27
    Hanafusa H, Torii S, Yasunaga T, Nishida E. Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol 2002; 4: 8508.
  • 28
    Uchida M, Enomoto A, Fukuda T et al. Dok-4 regulates GDNF-dependent neurite outgrowth through downstream activation of Rap1 and mitogen-activated protein kinase. J Cell Sci 2006; 119: 306777.
  • 29
    Ozaki K, Kadomoto R, Asato K, Tanimura S, Itoh N, Kohno M. ERK pathway positively regulates the expression of Sprouty genes. Biochem Biophys Res Commun 2001; 285: 10848.
  • 30
    Minowada G, Jarvis LA, Chi CL et al. Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 1999; 126: 446575.
  • 31
    Jijiwa M, Fukuda T, Kawai K et al. A targeting mutation of tyrosine 1062 in ret causes a marked decrease of enteric neurons and renal hypoplasia. Mol Cell Biol 2004; 24: 802636.
  • 32
    Asai N, Fukuda T, Wu Z et al. Targeted mutation of serine 697 in the Ret tyrosine kinase causes migration defect of enteric neural crest cells. Development 2006; 133: 450716.
  • 33
    Hishiki T, Isogai E, Kondo K et al. Glial cell line-derived neurotrophic factor/neurturin-induced differentiation and its enhancement by retinoic acid in primary human neuroblastomas expressing c-Ret, GFRα-1, and GFRα-2. Cancer Res 1998; 58: 215865.
  • 34
    Chao MV. Neurotrophins and their receptors: a convergence point for many signaling pathways. Nat Rev Neurosci 2003; 4: 299309.
  • 35
    Basson MA, Akbulut S, Watson-Johnson J et al. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 2005; 8: 22939.
  • 36
    Basson MA, Watson-Johnson J, Shakya R et al. Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev Biol 2006; 229: 46677.
  • 37
    Lo TL, Fong CW, Yusoff P et al. Sprouty and cancer: The first terms report. Cancer Lett 2006; 242: 14150.
  • 38
    Tsavachidou D, Coleman ML, Athanasiadis G et al. SPRY2 is an inhibitor of the ras/extracellular signal-regulated kinase pathway in melanocytes and melanoma cells with wild-type BRAF but not with the V599E mutant. Cancer Res 2004; 64: 55569.