• 1
    Hay ED. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 2005; 233: 70620.
  • 2
    Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 2005; 17: 54858.
  • 3
    Radisky DC, Kenny PA, Bissell MJ. Fibrosis and cancer: Do myofibroblasts come also from epithelial cells via EMT? J Cell Biochem; 101: 8309.
  • 4
    Thiery J-P, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006; 7: 13142.
  • 5
    Zeisberg M, Kalluri R. The role of epithelial-to-mesenchymal transition in renal fibrosis. J Mol Med 2004; 82: 17581.
  • 6
    Trainor PA, Melton KR, Manzanares M. Origins and plasticity of neural crest cells and their roles in jaw and craniofacial evolution. Int J Dev Biol 2003; 47: 54153.
  • 7
    Ciruna B, Rossant J. FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev Cell 2001; 1: 3749.
  • 8
    Carver EA, Jiang R, Lan Y, Oram KF, Gridley T. The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol 2001; 21: 81848.
  • 9
    Peinado H, Portillo F, Cano A. Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol 2004; 48: 36575.
  • 10
    Kemler R, Hierholzer A, Kanzler B et al . Stabilization of β-catenin in the mouse zygote leads to premature epithelial-mesenchymal transition in the epiblast. Development 2004; 131: 581724.
  • 11
    Mohamed OA, Clarke HJ, Dufort D. Β-catenin signaling marks the prospective site of primitive streak formation in the mouse embryo. Dev Dyn 2004; 231: 41624.
  • 12
    Meulemans D, Bronner-Fraser M. Gene–regulatory interactions in neural crest evolution and development. Dev Cell 2004; 7: 2919.
  • 13
    Nawshad A, LaGamba D, Hay ED. Transforming growth factor β (TGFβ) signalling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT). Arch Oral Biol 2004; 49: 67589.
  • 14
    Timmerman LA, Grego-Bessa J, Raya A et al . Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 2004; 18: 99115.
  • 15
    Person AD, Klewer SE, Runyan RB. Cell biology of cardiac cushion development. Int Rev Cytol 2005; 243: 287335.
  • 16
    Zavadil J, Cermak L, Soto-Nieves N, Böttinger EP. Integration of TGF-β/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J 2004; 23: 115565.
  • 17
    Niimi H, Pardali K, Vanlandewijck M, Heldin CH, Moustakas A. Notch signaling is necessary for epithelial growth arrest by TGF-β. J Cell Biol 2007; 176: 695707.
  • 18
    O’Brien LE, Zegers MM, Mostov KE. Opinion: Building epithelial architecture: insights from three-dimensional culture models. Nat Rev Mol Cell Biol 2002; 3: 5317.
  • 19
    Nelson CM, Vanduijn MM, Inman JL, Fletcher DA, Bissell MJ. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 2006; 314: 298300.
  • 20
    Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003; 4: 91525.
  • 21
    Grotegut S, Von Schweinitz D, Christofori G, Lehembre F. Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J 2006; 25: 353445.
  • 22
    Savagner P, Yamada KM, Thiery JP. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol 1997; 137: 140319.
  • 23
    Cordenonsi M, Montagner M, Adorno M et al . Integration of TGF-β and Ras/MAPK signaling through p53 phosphorylation. Science 2007; 315: 8403.
  • 24
    Irie HY, Pearline RV, Grueneberg D et al . Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. J Cell Biol 2005; 171: 102334.
  • 25
    Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene 2005; 24: 744354.
  • 26
    Zohn IE, Li Y, Skolnik EY, Anderson KV, Han J, Niswander L. p38 and a p38-interacting protein are critical for downregulation of E-cadherin during mouse gastrulation. Cell 2006; 125: 95769.
  • 27
    Rosano L, Spinella F, Di Castro V et al . Endothelin-1 promotes epithelial-to-mesenchymal transition in human ovarian cancer cells. Cancer Res 2005; 65: 11 64957.
  • 28
    Aranda V, Haire T, Nolan ME et al . Par6-aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nat Cell Biol 2006; 8: 123545.
  • 29
    Wu WS. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 2006; 25: 695705.
  • 30
    Massagué J, Seoane J, Wotton D. Smad transcription factors. Genes Dev 2005; 19: 2783810.
  • 31
    Moustakas A, Heldin C-H. Non-Smad TGF-β signals. J Cell Sci 2005; 118: 357384.
  • 32
    Cui W, Fowlis DJ, Bryson S et al . TGFβ1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 1996; 86: 53142.
  • 33
    Portella G, Cumming SA, Liddell J et al . Transforming growth factor β is essential for spindle cell conversion of mouse skin carcinoma in vivo: implications for tumor invasion. Cell Growth Differ 1998; 9: 393404.
  • 34
    Han G, Lu SL, Li AG et al . Distinct mechanisms of TGF-β1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J Clin Invest 2005; 115: 171423.
  • 35
    Gotzmann J, Huber H, Thallinger C et al . Hepatocytes convert to a fibroblastoid phenotype through the cooperation of TGF-β1 and Ha-Ras: steps towards invasiveness. J Cell Sci 2002; 115: 1189202.
  • 36
    Janda E, Lehmann K, Killisch I et al . Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 2002; 156: 299313.
  • 37
    Lehmann K, Janda E, Pierreux CE et al . Raf induces TGFβ production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev 2000; 14: 261022.
  • 38
    Oft M, Heider KH, Beug H. TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol 1998; 8: 124352.
  • 39
    Valcourt U, Kowanetz M, Niimi H, Heldin C-H, Moustakas A. TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 2005; 16: 19872002.
  • 40
    Yang Y, Pan X, Lei W, Wang J, Song J. Transforming growth factor-β1 induces epithelial-to-mesenchymal transition and apoptosis via a cell cycle-dependent mechanism. Oncogene 2006; 25: 723544.
  • 41
    Akhurst RJ, Derynck R. TGF-β signaling in cancer – a double-edged sword. Trends Cell Biol 2001; 11: S4451.
  • 42
    Pardali K, Moustakas A. Actions of TGF-β as tumor suppressor and prometastatic factor in human cancer. Biochim Biophys Acta 2007; 1775: 2162.
  • 43
    Piek E, Moustakas A, Kurisaki A, Heldin C-H, Ten Dijke P. TGF-β type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci 1999; 112: 455768.
  • 44
    Kowanetz M, Valcourt U, Bergström R, Heldin C-H, Moustakas A. Id2 and Id3 define the potency of cell proliferation and differentiation responses to tranforming growth factor β and bone morphogenetic protein. Mol Cell Biol 2004; 24: 424154.
  • 45
    Saika S, Ikeda K, Yamanaka O et al . Adenoviral gene transfer of BMP-7, Id2, or Id3 suppresses injury-induced epithelial-to-mesenchymal transition of lens epithelium in mice. Am J Physiol Cell Physiol 2006; 290: C2829.
  • 46
    Ju W, Ogawa A, Heyer J et al . Deletion of Smad2 in mouse liver reveals novel functions in hepatocyte growth and differentiation. Mol Cell Biol 2006; 26: 65467.
  • 47
    Levy L, Hill CS. Smad4 dependency defines two classes of transforming growth factor β (TGF-β) target genes and distinguishes TGF-β-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. Mol Cell Biol 2005; 25: 810825.
  • 48
    Li W, Qiao W, Chen L et al . Squamous cell carcinoma and mammary abscess formation through squamous metaplasia in Smad4/Dpc4 conditional knockout mice. Development 2003; 130: 614353.
  • 49
    Bardeesy N, Cheng KH, Berger JH et al . Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev 2006; 20: 313046.
  • 50
    Deckers M, Van Dinther M, Buijs J et al . The tumor suppressor Smad4 is required for transforming growth factor β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 2006; 66: 22029.
  • 51
    Takano S, Kanai F, Jazag A et al . Smad4 is essential for down-regulation of E-cadherin induced by TGF-β in pancreatic cancer cell line PANC-1. J Biochem (Tokyo) 2007; 141: 34551.
  • 52
    Zavadil J, Bitzer M, Liang D et al . Genetic programs of epithelial cell plasticity directed by transforming growth factor-β. Proc Natl Acad Sci U S A 2001; 98: 668691.
  • 53
    Jechlinger M, Grunert S, Tamir IH et al . Expression profiling of epithelial plasticity in tumor progression. Oncogene 2003; 22: 715569.
  • 54
    Kang Y, Siegel PM, Shu W et al . A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003; 3: 53749.
  • 55
    Xie L, Law BK, Aakre ME et al . Transforming growth factor β-regulated gene expression in a mouse mammary gland epithelial cell line. Breast Cancer Res 2003; 5: R18798.
  • 56
    LaGamba D, Nawshad A, Hay ED. Microarray analysis of gene expression during epithelial-mesenchymal transformation. Dev Dyn 2005; 234: 13242.
  • 57
    Bhowmick NA, Ghiassi M, Bakin A et al . Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 2001; 12: 2736.
  • 58
    Ellenrieder V, Hendler SF, Boeck W et al . Transforming growth factor β1 treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res 2001; 61: 42228.
  • 59
    Bakin AV, Rinehart C, Tomlinson AK, Arteaga CL. p38 mitogen-activated protein kinase is required for TGFβ-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci 2002; 115: 3193206.
  • 60
    Grande M, Franzén A, Karlsson JO, Ericson LE, Heldin NE, Nilsson M. Transforming growth factor-β and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes. J Cell Sci 2002; 115: 422736.
  • 61
    Huber MA, Azoitei N, Baumann B et al . NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 2004; 114: 56981.
  • 62
    Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL. Activation of the Erk pathway is required for TGF-β1-induced EMT in vitro. Neoplasia 2004; 6: 60310.
  • 63
    Davies M, Robinson M, Smith E, Huntley S, Prime S, Paterson I. Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-β1 involves MAPK, Smad and AP-1 signalling pathways. J Cell Biochem 2005; 95: 91831.
  • 64
    Ao M, Williams K, Bhowmick NA, Hayward SW. Transforming growth factor-β promotes invasion in tumorigenic but not in nontumorigenic human prostatic epithelial cells. Cancer Res 2006; 66: 800716.
  • 65
    Santibanez JF. JNK mediates TGF-β1-induced epithelial mesenchymal transdifferentiation of mouse transformed keratinocytes. FEBS Lett 2006; 580: 538591.
  • 66
    Shim JH, Xiao C, Paschal AE et al . TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 2005; 19: 266881.
  • 67
    Bhowmick NA, Zent R, Ghiassi M, McDonnell M, Moses HL. Integrin β1 signaling is necessary for transforming growth factor-β activation of p38 MAPK and epithelial plasticity. J Biol Chem 2001; 276: 46 70713.
  • 68
    Bates RC, Bellovin DI, Brown C et al . Transcriptional activation of integrin β6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J Clin Invest 2005; 115: 33947.
  • 69
    Li Y, Yang J, Dai C, Wu C, Liu Y. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Invest 2003; 112: 50316.
  • 70
    Lee YI, Kwon YJ, Joo CK. Integrin-linked kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition. Biochem Biophys Res Commun 2004; 316: 9971001.
  • 71
    Leung-Hagesteijn C, Hu MC, Mahendra AS et al . Integrin-linked kinase mediates bone morphogenetic protein 7-dependent renal epithelial cell morphogenesis. Mol Cell Biol 2005; 25: 364857.
  • 72
    Yang Y, Pan X, Lei W et al . Regulation of transforming growth factor-β1-induced apoptosis and epithelial-to-mesenchymal transition by protein kinase a and signal transducers and activators of transcription 3. Cancer Res 2006; 66: 861724.
  • 73
    Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL. Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science 2005; 307: 16039.
  • 74
    Janda E, Nevolo M, Lehmann K, Downward J, Beug H, Grieco M. Raf plus TGFβ-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin. Oncogene 2006; 25: 711730.
  • 75
    Prunier C, Howe PH. Disabled-2 (Dab2) is required for transforming growth factor β-induced epithelial to mesenchymal transition (EMT). J Biol Chem 2005; 280: 17 5408.
  • 76
    Vogelmann R, Nguyen-Tat MD, Giehl K, Adler G, Wedlich D, Menke A. TGFβ-induced downregulation of E-cadherin-based cell-cell adhesion depends on PI3-kinase and PTEN. J Cell Sci 2005; 118: 490112.
  • 77
    Gotzmann J, Fischer AN, Zojer M et al . A crucial function of PDGF in TGF-β-mediated cancer progression of hepatocytes. Oncogene 2006; 25: 317085.
  • 78
    Fischer AN, Fuchs E, Mikula M, Huber H, Beug H, Mikulits W. PDGF essentially links TGF-β signaling to nuclear β-catenin accumulation in hepatocellular carcinoma progression. Oncogene 2007; 26: 3395405.
  • 79
    Yang L, Lin C, Liu ZR. P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin. Cell 2006; 127: 13955.
  • 80
    Jechlinger M, Sommer A, Moriggl R et al . Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest 2006; 116: 156170.
  • 81
    Michl P, Ramjaun AR, Pardo OE et al . CUTL1 is a target of TGFβ signaling that enhances cancer cell motility and invasiveness. Cancer Cell 2005; 7: 52132.
  • 82
    Ripka S, Konig A, Buchholz M et al . WNT5A – target of CUTL1 and potent modulator of tumor cell migration and invasion in pancreatic cancer. Carcinogenesis 2007; 8: 117887.
  • 83
    Yook JI, Li XY, Ota I et al . A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol 2006; 8: 1398406.
  • 84
    Waerner T, Alacakaptan M, Tamir I et al . ILEI: a cytokine essential for EMT, tumor formation, and late events in metastasis in epithelial cells. Cancer Cell 2006; 10: 22739.
  • 85
    Onoue T, Uchida D, Begum NM, Tomizuka Y, Yoshida H, Sato M. Epithelial-mesenchymal transition induced by the stromal cell-derived factor-1/CXCR4 system in oral squamous cell carcinoma cells. Int J Oncol 2006; 29: 11338.
  • 86
    Kang Y, Chen CR, Massagué J. A self-enabling TGFβ response coupled to stress signaling. Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell 2003; 11: 91526.
  • 87
    Kondo M, Cubillo E, Tobiume K et al . A role for Id in the regulation of TGF-β-induced epithelial-mesenchymal transdifferentiation. Cell Death Differ 2004; 11: 1092101.
  • 88
    Zeisberg M, Shah AA, Kalluri R. Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney. J Biol Chem 2005; 280: 8094100.
  • 89
    Perk J, Iavarone A, Benezra R. Id family of helix-loop-helix proteins in cancer. Nat Rev Cancer 2005; 5: 60314.
  • 90
    Peinado H, Quintanilla M, Cano A. Transforming growth factor β-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 2003; 278: 21 11323.
  • 91
    Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A. Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 2003; 112: 148694.
  • 92
    Comijn J, Berx G, Vermassen P et al . The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 2001; 7: 126778.
  • 93
    Vandewalle C, Comijn J, De Craene B et al . SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucl Acids Res 2005; 33: 656678.
  • 94
    Eger A, Stockinger A, Park J et al . β-Catenin and TGFβ signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene 2004; 23: 267280.
  • 95
    Martinez-Alvarez C, Blanco MJ, Perez R et al . Snail family members and cell survival in physiological and pathological cleft palates. Dev Biol 2004; 265: 20718.
  • 96
    Romano LA, Runyan RB. Slug is an essential target of TGFβ2 signaling in the developing chicken heart. Dev Biol 2000; 223: 91102.
  • 97
    Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin C-H, Moustakas A. Transforming growth factor-β employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol 2006; 174: 17583.
  • 98
    Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival implications in development and cancer. Development 2005; 132: 315161.
  • 99
    Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res 2007; 67: 197987.
  • 100
    Venkov CD, Link AJ, Jennings JL et al . A proximal activator of transcription in epithelial-mesenchymal transition. J Clin Invest 2007; 117: 48291.
  • 101
    Shen X, Li J, Hu PP, Waddell D, Zhang J, Wang X-F. The activity of guanine exchange factor NET1 is essential for transforming growth factor-β-mediated stress fiber formation. J Biol Chem 2001; 276: 15 3628.
  • 102
    Giannelli G, Fransvea E, Marinosci F et al . Transforming growth factor-β1 triggers hepatocellular carcinoma invasiveness via α3β1 integrin. Am J Pathol 2002; 161: 18393.
  • 103
    Dumont N, Bakin AV, Arteaga CL. Autocrine transforming growth factor-β signaling mediates Smad-independent motility in human cancer cells. J Biol Chem 2003; 278: 327585.
  • 104
    Prindull G. Hypothesis: cell plasticity, linking embryonal stem cells to adult stem cell reservoirs and metastatic cancer cells? Exp Hematol 2005; 33: 73846.
  • 105
    Ullmann U, In't Veld P, Gilles C et al . Epithelial-mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions. Mol Hum Reprod 2007; 13: 2132.
  • 106
    Tarin D, Thompson EW, Newgreen DF. The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 2005; 65: 59966000; discussion–1.
  • 107
    Christiansen JJ, Rajasekaran AK. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 2006; 66: 831926.
  • 108
    Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D, Christofori G. Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 2006; 9: 26172.
  • 109
    Wang W, Goswami S, Sahai E, Wyckoff JB, Segall JE, Condeelis JS. Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends Cell Biol 2005; 15: 13845.
  • 110
    Petersen OW, Nielsen HL, Gudjonsson T et al . Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am J Pathol 2003; 162: 391402.
  • 111
    Micke P, Östman A. Exploring the tumour environment: cancer-associated fibroblasts as targets in cancer therapy. Expert Opin Ther Targets 2005; 9: 121733.
  • 112
    Igarashi A, Okochi H, Bradham DM, Grotendorst GR. Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol Biol Cell 1993; 4: 63745.
  • 113
    De Wever O, Westbroek W, Verloes A et al . Critical role of N-cadherin in myofibroblast invasion and migration in vitro stimulated by colon-cancer-cell-derived TGF-β or wounding. J Cell Sci 2004; 117: 4691703.
  • 114
    Lewis MP, Lygoe KA, Nystrom ML et al . Tumour-derived TGF-β1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer 2004; 90: 82232.
  • 115
    Bhowmick NA, Chytil A, Plieth D et al . TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 2004; 303: 84851.
  • 116
    Cheng N, Bhowmick NA, Chytil A et al . Loss of TGF-β type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-α-, MSP- and HGF-mediated signaling networks. Oncogene 2005; 24: 505368.
  • 117
    Wang S, Wilkes MC, Leof EB, Hirschberg R. Imatinib mesylate blocks a non-Smad TGF-β pathway and reduces renal fibrogenesis in vivo. FASEB J 2005; 19: 111.