SEARCH

SEARCH BY CITATION

References

  • 1
    Cohen S. Isolation and biological effects of an epidermal growth stimulating protein. Natl Cancer Inst Monogr 1964; 13: 1327.
  • 2
    Derynck R, Roberts AB, Winkler ME, Chen EY, Goeddel DV. Human transforming growth factor-α: precursor structure and expression in E. coli. Cell 1984; 38: 28797.
  • 3
    Shoyab M, Plowman GD, McDonald VL, Bradley JG, Todaro GJ. Structure and function of human amphiregulin: a member of the epidermal growth factor family. Science 1989; 243: 10746.
  • 4
    Higashiyama S, Abraham JA, Miller J, Fiddes JC, Klagsbrun M. A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science 1991; 251: 9369.
  • 5
    Shing Y, Christfori G, Hanahan D et al . β-cellulin: A mitogen from pancreatic B cell tumors. Science 1993; 259: 160414.
  • 6
    Toyoda H, Komurasaki T, Uchida D et al . Epiregulin, a novel epidermal growth factor with mitogenic activity for rat primary hepatocytes. J Biol Chem 1995; 270: 7495500.
  • 7
    Strachan L, Murison JG, Prestidge RL, Sleeman MA, Watson JD, Kumble KD. Cloning and biological activity of epigen, a novel member of the epidermal growth factor superfamily. J Biol Chem 2001; 276: 18 26571.
  • 8
    Wen D, Peles E, Cupples R et al . Neu differentiation factor: a transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit. Cell 1992; 69: 55972.
  • 9
    Holmes WE, Sliwkowski MX, Akita RW et al . Identification of heregulin, a specific activator of p185erbB2. Science 1992; 256: 120510.
  • 10
    Falls DL, Rosen KM, Corfas G, Lane WS, Fischbach GD. ARIA, a protein that stimulates acetylcholine receptor synthesis, is a member of the neu ligand family. Cell 1993; 72: 80115.
  • 11
    Marchionni MA, Goodearl AD, Chen MS et al . Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 1993; 362: 31218.
  • 12
    Chang HD, Riese IIJ, Gillbert WD, Stern F, McMahan UJ. Ligands for ErbB-family receptors encoded by a neuregulin related gene. Nature 1997; 387: 50912.
  • 13
    Carraway KL, IIIWeber JL, Unger MJ et al . Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinases. Nature 1997; 387: 51216.
  • 14
    Busfield SJ, Michnick DA, Chickering TW et al . Characterization of a neuregulin-related gene, Don-1, that is highly expressed in restricted region of the cerebellum and hippocampus. Mol Cell Biol 1997; 17: 400714.
  • 15
    Higashiyama S, Horikawa M, Yamada K et al . A novel brain-derived member of the epidermal growth factor family that interacts with ErbB3 and ErbB4. J Biochem 1997; 122: 67580.
  • 16
    Zhang D, Sliwkowski MX, Mark M et al . Neuregulin-3 (NRG3): a novel neural tissue-enriched protein that binds and activates ErbB4. Proc Natl Acad Sci USA 1999; 94: 95627.
  • 17
    Harari D, Tzahar E, Romano J et al . Neuregulin-4: a novel growth factor that acts through the ErbB4 receptor tyrosine kinase. Oncogene 1999; 18: 26819.
  • 18
    Uchida T, Wada K, Akamatsu T et al . A novel epidermal growth factor-like molecule containing two follistatin modules stimulates tyrosine phosphorylation of ErbB4 in MKN28 gastric cancer cells. Biochem Biophys Res Commun 1999; 266: 593602.
  • 19
    Kinugasa Y, Ohomoto H, Ishiguro H, Tokita Y, Oohira A, Higashiyama S. Neuroglycan C, a novel member of the neuregulin family. Biochem Biophys Res Commun 2004; 321: 10459.
  • 20
    Citri A, Yarden Y. EGF–ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 2006; 7: 50516.
  • 21
    Hackel PO, Zwick E, Prenzel N, Ullrich A. Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin Cell Biol 1999; 11: 1849.
  • 22
    Moghal NP, Sternberg W. Multiple positive and negative regulators of signaling by the EGF-receptor. Curr Opin Cell Biol 1999; 11: 1908.
  • 23
    Nanba D, Mammoto A, Hashimoto K, Higashiyama S. Proteolytic release of the carboxy-terminal fragment of proHB-EGF causes nuclear export of PLZF. J Cell Biol 2003; 163: 489502.
  • 24
    Nanba D, Higashiyama S. Dual intracellular signaling by proteolytic cleavage of membrane-anchored heparin-binding EGF-like growth factor. Cytokine Growth Factor Rev 2003; 15: 1319.
  • 25
    Carpenter G, Lembach KJ, Morrison MM, Cohen S. Characterization of the binding of 125I-labeled epidermal growth factor to human fibroblasts. J Biol Chem 1975; 250: 4297304.
  • 26
    Ushiro H, Cohen S. Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A-431 cell membranes. J Biol Chem 1980; 255: 83635.
  • 27
    Carpenter G, King L Jr, Cohen S. Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro. Nature 1978; 276: 40910.
  • 28
    Humphrey PA, Wong AJ, Vogelstein B et al . Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma. Proc Natl Acad Sci USA 1990; 87: 420711.
  • 29
    Sizeland AM, Burgess AW. Anti-sense transforming growth factor α oligonucleotides inhibit autocrine stimulated proliferation of a colon carcinoma cell line. Mol Biol Cell 1992; 3: 123543.
  • 30
    Gschwind A, Fischer OM, Ullrich A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 2004; 4: 36170.
  • 31
    Hynes NE, Lane HA. ErbB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005; 5: 34154.
  • 32
    Bubil EM, Yarden Y. The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr Opin Cell Biol 2007; 19: 12434.
  • 33
    Lynch TJ, Bell DW, Sordella R et al . Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350: 212939.
  • 34
    Paez JG, Janne PA, Lee JC et al . EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304: 1497500.
  • 35
    Kobayashi S, Boggon TJ, Dayaram T et al . EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 2005; 352: 78692.
  • 36
    Bell DW, Gore I, Okimoto RA et al . Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat Genet 2005; 37: 131516.
  • 37
    Harris RC, Chung E, Coffey RJ. EGF receptor ligands. Exp Cell Res 2003; 284: 213.
  • 38
    Falls DL. Neuregulins: functions, forms, and signaling strategies. Exp Cell Res 2003; 284: 1430.
  • 39
    Yokozeki T, Wakatsuki S, Hatsuzawa K, Black RA, Wada I, Sehara-Fujisawa A. Meltrin β/ADAM19 mediates ectodomain shedding of neuregulin β1 in the Golgi apparatus: fluorescence correlation spectroscopic observation of the dynamics of ectodomain shedding in living cells. Genes Cells 2007; 12: 32943.
  • 40
    Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995; 19: 183232.
  • 41
    Pandiella A, Massague J. Cleavage of the membrane precursor for transforming growth factor alpha is a regulated process. Proc Natl Acad Sci USA 1991; 88: 172630.
  • 42
    Goishi K, Higashiyama S, Klagsbrun M, Ishikawa M, Mekada E, Taniguchi N. Phorbol ester induces the rapid processing of cell surface heparin-binding EGF-like growth factor: conversion from juxtacrine to paracrine growth factor activity. Mol Biol Cell 1995; 6: 96780.
  • 43
    Dethlefsen SM, Raab G, Moses MA, Adam RM, Klagsbrun M, Freeman MR. Extracellular calcium influx stimulates metalloproteinase cleavage and secretion of heparin-binding EGF-like growth factor independently of protein kinase C. J Cell Biochem 1998; 69: 14353.
  • 44
    Prenzel N, Zwick E, Daub H et al . EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 1999; 402: 8848.
  • 45
    Asakura M, Kitakaze M, Takashima S et al . Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF. metalloproteinase inhibitors as a new therapy. Nat Med 2002; 8: 3540.
  • 46
    Lemjabbar H, Basbaum C. Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat Med 2002; 8: 416.
  • 47
    Tanida S, Joh T, Itoh K et al . The mechanism of cleavage of EGFR ligands induced by inflammatory cytokines in gastric cancer cells. Gastroenterology 2004; 127: 55969.
  • 48
    Nanba D, Inoue H, Shigemi Y, Shirakata Y, Hashimoto K, Higashiyama S. An intermediary role of proHB-EGF shedding in growth factor-induced c-Myc gene expression. J Cell Physiol 2007; 214: 46575.
  • 49
    Mochizuki S, Okada Y. ADAMs in cancer cell proliferation and progression. Cancer Sci 2007; 98: 6218.
  • 50
    Kenny PA, Bissell MJ. Targeting TACE-dependent EGFR ligand shedding in breast cancer. J Clin Invest 2007; 117: 33745.
  • 51
    Seals DF, Courtneidge SA. The ADAMs family of mettalloproteases: multidomain proteins with multiple functions. Genes Dev 2003; 17: 730.
  • 52
    Ohtsu H, Dempsey PJ, Eguchi S. ADAMs as mediators of EGF receptor transactivation by G-protein-coupled receptor. Am J Physiol Cell Physiol 2006; 291: C1C10.
  • 53
    Murphy G, Knauper V, Lee MH et al . Role of TIMPs (tissue inhibitors of metalloproteinases) in pericellular proteolysis: the specificity is in the detail. Biochem Soc Symp 2003; 70: 6580.
  • 54
    Muraguchi T, Takegami Y, Ohtsuka T et al . RECK modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity. Nat Neurosci 2007; 10: 83845.
  • 55
    Daub H, Weiss FU, Wallasch C, Ullrich A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 1996; 379: 55760.
  • 56
    Higashiyama S. Metalloproteinase-mediated shedding of Heparin-binding EGF-like growth factor and its pathophysiological roles. Protein Peptide Lett 2004; 11: 44350.
  • 57
    Higashiyama S, Nanba D. ADAM mediated ectodomain shedding of the EGFR ligands in receptor cross talk. Biochemica Biophysica Acta 2005; 751: 1107.
  • 58
    Hashimoto K, Higashiyama S, Asada H et al . Heparin-binding EGF-like growth factor is an autocrine growth factor for human keratinocytes. J Biol Chem 1994; 269: 20 0606.
  • 59
    Tokumaru S, Higashiyama S, Endo T et al . Ectodomain shedding of epidermal growth factor receptor ligands is required for keratinocyte migration in cutaneous wound healing. J Cell Biol 2000; 151: 20919.
  • 60
    Yamazaki S, Iwamoto R, Saeki K et al . Mutant mice with defects in the ectodomain shedding of HB-EGF show severe abnormal development. J Cell Biol 2003; 163: 46975.
  • 61
    Shirakata Y, Kimura R, Nanba D et al . Heparin-binding EGF-like growth factor is essential for keratinocyte migration in skin wound healing. J Cell Sci 2005; 118: 236370.
  • 62
    Iwamoto R, Yamazaki S, Asakura M et al . HB-EGF and ErbB signaling is essential for heart function. Pro Natl Acad Sci USA 2003; 100: 32216.
  • 63
    Jackson LF, Qiu TH, Sunnarborg SW et al . Defective valvulogenesis in HB-EGF and TACE-null mice is associated with aberrant BMP signaling. EMBO J 2003; 22: 270416.
  • 64
    Iwamoto R, Mekada E. ErbB and HB-EGF signaling in heart development and function. Cell Struct Funct 2006; 31: 114.
  • 65
    Raab G, Higashiyama S, Hetelekidis S et al . Biosynthesis and processing by phorbol ester of the cells surface-associated precursor form of heparin-binding EGF-like growth factor. Biochem Biophys Res Commun 1994; 204: 5927.
  • 66
    Gechtman Z, Alonson JL, Raab G, Ingber DE, Klagsbrun M. The shedding of membrane-anchored heparin-binding epidermal-like growth factor is regulated by the raf/mitogen-activated protein kinase cascade and by cell adhesion and spreading. J Biol Chem 1999; 274: 28 82835.
  • 67
    Izumi Y, Hirata M, Hasuwa H et al . A metalloprotease-disintegrin, MDC9/meltrin-γ/ADAM9 and PKCδ are involved in TPA-induced ectodomain shedding of membrane-anchored heparin-binding EGF-like growth factor. EMBO J 1998; 17: 726072.
  • 68
    Roudabush FL, Pierce KL, Maudsley S, Khan KD, Luttrell LM. Transactivation of the EGF receptor mediates IGF-1-stimulated shc phosphorylation and ERK1/2 activation in COS-7 cells. J Biol Chem 2000; 275: 22 5839.
  • 69
    Filardo EJ, Quinn JA, Bland KI, Frackelton Jr AR. Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol 2000; 14: 164960.
  • 70
    Razandi M, Pedram A, Park ST, Levin ER. Proximal events in signaling by plasma membrane estrogen receptors. J Biol Chem 2003; 278: 270112.
  • 71
    Fujiyama S, Matsubara H, Nozawa Y et al . Angiotensin AT(1) and AT(2) receptors differentially regulate angiopoietin-2 and vascular endothelial growth factor expression and angiogenesis by modulating heparin binding-epidermal growth factor (EGF) -mediated EGF receptor transactivation. Circ Res 2001; 88: 229.
  • 72
    Eguchi S, Dempsey PJ, Frank GD, Motley ED, Inagami T. Activation of MAPKs by angiotensin II in vascular smooth muscle cells. Metalloprotease-dependent EGF receptor activation is required for activation of ERK and p38 MAPK but not for JNK. J Biol Chem 2001; 276: 795762.
  • 73
    Wallasch C, Crabtree JE, Bevec D, Robinson PA, Wagner H, Ullrich A. Helicobacter pylori-stimulated EGF receptor transactivation requires metalloprotease cleavage of HB-EGF. Biochem Biophys Res Commun 2002; 295: 695701.
  • 74
    Cussac D, Schaak S, Denis C, Paris H. Alpha 2B-adrenergic receptor activates MAPK via a pathway involving arachidonic acid metabolism, matrix metalloproteinases, and epidermal growth factor receptor transactivation. J Biol Chem 2002; 277: 19 8828.
  • 75
    Chen JK, Capdevila J, Harris RC. Heparin-binding EGF-like growth factor mediates the biological effects of P450 arachidonate epoxygenase metabolites in epithelial cells. Proc Natl Acad Sci USA 2002; 99: 602934.
  • 76
    Seo M, Lee M-J, Heo JH et al . G protein beta gamma subunits augment UVB-induced apoptosis by stimulating the release of soluble heparin binding EGF-like growth factor from human keratinocytes. J Biol Chem 2007; 282: 24 72030.
  • 77
    Black RA, White JM. ADAMs: focus on the protease domain. Curr Opin Cell Biol 1998; 10: 6549.
  • 78
    Schlöndorff J, Blobel CP. Metalloprotease-disintegrins: modular proteins capable of promoting cell–cell interactions and triggering signals by protein-ectodomain shedding. J Cell Sci 1999; 112: 360317.
  • 79
    Weskamp G, Cai H, Brodie TA et al . Mice lacking the metalloprotease-disintegrin MDC9 (ADAM9) have no evident major abnormalities during development or adult life. Mol Cell Biol 2002; 22: 153744.
  • 80
    Kurisaki T, Masuda A, Sudo K et al . Phenotypic analysis of Meltrin alpha (ADAM12) -deficient mice: involvement of Meltrin alpha in adipogenesis and myogenesis. Mol Cell Biol 2003; 23: 5561.
  • 81
    Sahin U, Weskamp G, Kelly K et al . Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 2004; 164: 76979.
  • 82
    Horiuchi K, Le Gall S, Schulte M et al . Substrate selectivity of epidermal growth factor-receptor ligand sheddases and their regulation by phorbol esters and calcium influx. Mol Biol Cell 2007; 18: 17688.
  • 83
    Yan Y, Shirakabe K, Werb Z. The metalloprotease Kuzbanian (ADAM10) mediates the transactivation of EGF receptor by G protein-coupled receptors. J Cell Biol 2002; 158: 2216.
  • 84
    Mori S, Tanaka M, Nanba D et al . PACSIN3 binds ADAM12/meltrin alpha and upregulates ectodomain shedding of heparin-binding EGF-like growth factor. J Biol Chem 2003; 278: 46 02934.
  • 85
    Tanaka M, Mori S, Nanba D et al . ADAM12-binding protein Eve-1 is required for ectodomain shedding of heparin-binding epidermal growth factor-like growth factor. J Biol Chem 2004; 279: 41 9509.
  • 86
    Nishi E, Prat A, Hospital V, Elenius K, Klagsbrun M. N-arginine dibasic convertase is a specific receptor for heparin-binding EGF-like growth factor that mediates cell migration. EMBO J 2001; 20: 334250.
  • 87
    Nishi E, Hiraoka Y, Yoshida K, Okawa K, Kita T. Nardilysin enhances ectodomain shedding of heparin-binding epidermal growth factor-like growth factor through activation of tumor necrosis factor-alpha-converting enzyme. J Biol Chem 2006; 281: 31 16472.
  • 88
    Kinugasa Y, Hieda M, Hori M, Higashiyama S. The carboxyl-terminal fragment of pro-HB-EGF reverses Bcl6-mediated gene repression. J Biol Chem 2007; 282: 14 797806.
  • 89
    Yeyati PL, Shaknovich R, Boterashvili S et al . Leukemia translocation protein PLZF inhibits cell growth and expression of cyclin A. Oncogene 1999; 18: 92534.
  • 90
    Barna M, Merghoub T, Costoya JA et al . Plzf mediates transcriptional repression of HoxD gene expression through chromatin remodeling. Dev Cell 2002; 3: 499510.
  • 91
    McConnell MJ, Chevallier N, Berkofsky-Fessler W et al . Growth suppression by acute promyelocytic leukemia-associated protein PLZF is mediated by repression of c-myc expression. Mol Cell Biol 2003; 23: 937588.
  • 92
    Fernández de Mattos S, Essafi A, Soeiro I et al . FoxO3a and BCR-ABL regulate cyclin D2 transcription through a STAT5/BCL6-dependent mechanism. Mol Cell Biol 2004; 24: 10 05871.
  • 93
    Shaffer ALYuX, He Y, Boldrick J, Chan EP, Staudt LM. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 2000; 13: 199212.
  • 94
    Chattopadhyay A, Tate SA, Beswick RW, Wagner SD, Ko Ferrigno P. A peptide aptamer to antagonize BCL-6 function. Oncogene 2006; 25: 222333.
  • 95
    Hong SH, David G, Wong CW, Dejean A, Privalsky ML, Privalsky. SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor alpha (RARalpha) and PLZF-RARalpha oncoproteins associated with acute promyelocytic leukemia. Proc Natl Acad Sci USA 1997; 94: 902833.
  • 96
    David G, Alland L, Hong SH, Wong CW, DePinho RA. Dejean Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein. Oncogene 1998; 16: 254956.
  • 97
    Grignani F, De Matteis S, Nervi C et al . Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 1998; 391: 8158.
  • 98
    Guidez F, Ivins S, Zhu J, Söderström M, Waxman S, Zelent A. Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZF-RARalpha underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood 1998; 91: 263442.
  • 99
    He LZ, Guidez F, Tribioli C et al . Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nat Genet 1998; 18: 12635.
  • 100
    Lin RJ, Nagy L, Inoue S, Shao W, Miller WH Jr, Evans RM. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 1998; 391: 8114.
  • 101
    Huynh KD, Bardwell VJ. The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT. Oncogene 1998; 17: 247384.
  • 102
    Huynh KD, Fischle W, Verdin E, Bardwell VJ. BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev 2000; 14: 181023.
  • 103
    Wang F, Sloss C, Zhang X, Lee SW, Cusack JC. Membrane-bound heparin-binding epidermal growth factor like growth factor regulates E-cadherin expression in pancreatic carcinoma cells. Cancer Res 2007; 67: 848693.
  • 104
    Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 1997; 91: 84554.
  • 105
    Kosak ST, Skok JA, Medina KL et al . Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 2002; 296: 15862.
  • 106
    Senbonmatsu T, Saito T, Landon EJ et al . A novel angiotensin II type 2 receptor signaling pathway: possible role in cardiac hypertrophy. EMBO J 2003; 22: 647182.
  • 107
    Cook M, Gould A, Brand N et al . Expression of the zinc-finger gene PLZF at rhombomere boundaries in the vertebrate hindbrain. Proc Natl Acad Sci USA 1995; 92: 224953.
  • 108
    Yoshida T, Fukuda T, Hatano M et al . The role of Bcl6 in mature cardiac myocytes. Cardiovasc Res 1999; 42: 6709.
  • 109
    Lin J, Hutchinson L, Gaston SM, Raab G, Freeman MR. BAG-1 is a novel cytoplasmic binding partner of the membrane form of heparin-binding EGF-like growth factor: a unique role for proHB-EGF in cell survival regulation. J Biol Chem 2001; 267: 30 12732.
  • 110
    Townsend PA, Cutress RI, Sharp A, Brimmell M, Packham G. BAG-1. a multifunctional regulator of cell growth and survival. Biochim Biophys Acta 2003; 1603: 8398.
  • 111
    Knee DA, Froesch BA, Nuber U, Takayama S, Reed JC. Structure-function analysis of Bag1 proteins. Effects on androgen receptor transcriptional activity. J Biol Chem 2001; 276: 12 71824.
  • 112
    Hague A, Packham G, Huntley S, Shefford K, Eveson JW. Deregulated Bag-1 protein expression in human oral squamous cell carcinomas and lymph node metastases. J Pathol 2002; 197: 6071.
  • 113
    Shum L, Reeves SA, Kuo AC, Fromer ES, Derynck R. Association of the transmembrane TGF-alpha precursor with a protein kinase complex. J Cell Biol 1994; 125: 90316.
  • 114
    Bao J, Wolpowitz D, Role LW, Talmage DA. Back signaling by the Nrg-1 intracellular domain. J Cell Biol 2003; 161: 113341.
  • 115
    Bao J, Lin H, Ouyang Y et al . Activity-dependent transcription regulation of PSD-95 by neuregulin-1 and Eos. Nat Neurosci 2004; 7: 12508.
  • 116
    Umata T, Hirata M, Takahashi T et al . A dual signaling cascade that regulates the ectodomain shedding of heparin-binding epidermal growth factor-like growth factor. J Biol Chem 2001; 276: 30 47582.