SEARCH

SEARCH BY CITATION

References

  • 1
    Thompson MP, Kurzrock R. Epstein–Barr virus and cancer. Clin Cancer Res 2004; 10: 80321.
  • 2
    Oyama T, Ichimura K, Suzuki R et al . Senile EBV+ B-cell lymphoproliferative disorders: a clinicopathologic study of 22 patients. Am J Surg Pathol 2003; 27: 1626.
  • 3
    Oyama T, Yamamoto K, Asano N et al . Age-related EBV-associated B-cell lymphoproliferative disorders constitute a distinct clinicopathologic group: a study of 96 patients. Clin Cancer Res 2007; 13: 512432.
  • 4
    Park S, Lee J, Ko YH et al . The impact of Epstein–Barr virus status on clinical outcome in diffuse large B-cell lymphoma. Blood 2007; 110: 9728.
  • 5
    Haluska FG, Brufsky AM, Canellos GP. The cellular biology of the Reed–Sternberg cell. Blood 1994; 84: 100519.
  • 6
    Brauninger A, Schmitz R, Bechtel D, Renne C, Hansmann ML, Kuppers R. Molecular biology of Hodgkin's and Reed/Sternberg cells in Hodgkin's lymphoma. Int J Cancer 2006; 118: 185361.
  • 7
    Kuppers R, Rajewsky K. The origin of Hodgkin and Reed/Sternberg cells in Hodgkin's disease. Annu Rev Immunol 1998; 16: 47193.
  • 8
    Schwering I, Brauninger A, Klein U et al . Loss of the B-lineage-specific gene expression program in Hodgkin and Reed–Sternberg cells of Hodgkin lymphoma. Blood 2003; 101: 150512.
  • 9
    Hanamoto H, Nakayama T, Miyazato H et al . Expression of CCL28 by Reed–Sternberg cells defines a major subtype of classical Hodgkin's disease with frequent infiltration of eosinophils and/or plasma cells. Am J Pathol 2004; 164: 9971006.
  • 10
    Hedvat CV, Jaffe ES, Qin J et al . Macrophage-derived chemokine expression in classical Hodgkin's lymphoma: application of tissue microarrays. Mod Pathol 2001; 14: 12706.
  • 11
    Maggio EM, Van Den Berg A, Visser L et al . Common and differential chemokine expression patterns in rs cells of NLP, EBV positive and negative classical Hodgkin lymphomas. Int J Cancer 2002; 99: 66572.
  • 12
    Teruya-Feldstein J, Jaffe ES, Burd PR, Kingma DW, Setsuda JE, Tosato G. Differential chemokine expression in tissues involved by Hodgkin's disease: direct correlation of eotaxin expression and tissue eosinophilia. Blood 1999; 93: 246370.
  • 13
    Van Den Berg A, Visser L, Poppema S. High expression of the CC chemokine TARC in Reed–Sternberg cells. A possible explanation for the characteristic T-cell infiltratein Hodgkin's lymphoma. Am J Pathol 1999; 154: 168591.
  • 14
    Iellem A, Mariani M, Lang R et al . Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4 (+) CD25 (+) regulatory T cells. J Exp Med 2001; 194: 84753.
  • 15
    Yoshie O, Imai T, Nomiyama H. Chemokines in immunity. Adv Immunol 2001; 78: 57110.
  • 16
    Marshall NA, Christie LE, Munro LR et al . Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 2004; 103: 175562.
  • 17
    Alvaro T, Lejeune M, Salvado MT et al . Outcome in Hodgkin's lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin Cancer Res 2005; 11: 146773.
  • 18
    Ishida T, Ishii T, Inagaki A et al . Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res 2006; 66: 571622.
  • 19
    Poppema S, Van Den Berg A. Interaction between host T cells and Reed–Sternberg cells in Hodgkin lymphomas. Semin Cancer Biol 2000; 10: 34550.
  • 20
    Nakayama T, Hieshima K, Nagakubo D et al . Selective induction of Th2-attracting chemokines CCL17 and CCL22 in human B cells by latent membrane protein 1 of Epstein–Barr virus. J Virol 2004; 78: 166574.
  • 21
    Brink AA, Dukers DF, Van Den Brule AJ et al . Presence of Epstein–Barr virus latency type III at the single cell level in post-transplantation lymphoproliferative disorders and AIDS related lymphomas. J Clin Pathol 1997; 50: 91118.
  • 22
    Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 105761.
  • 23
    Lan HY, Mu W, Nikolic-Paterson DJ, Atkins RC. A novel, simple, reliable, and sensitive method for multiple immunoenzyme staining: use of microwave oven heating to block antibody crossreactivity and retrieve antigens. J Histochem Cytochem 1995; 43: 97102.
  • 24
    Lim HW, Hillsamer P, Kim CH. Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell-driven B cell responses. J Clin Invest 2004; 114: 16409.
  • 25
    Wysocki CA, Jiang Q, Panoskaltsis-Mortari A et al . Critical role for CCR5 in the function of donor CD4+CD25+ regulatory T cells during acute graft-versus-host disease. Blood 2005; 106: 33007.
  • 26
    Valmori D, Merlo A, Souleimanian NE, Hesdorffer CS, Ayyoub M. A peripheral circulating compartment of natural naive CD4 Tregs. J Clin Invest 2005; 115: 195362.
  • 27
    Lim HW, Broxmeyer HE, Kim CH. Regulation of trafficking receptor expression in human forkhead box P3+ regulatory T cells. J Immunol 2006; 177: 84051.
  • 28
    Hopwood P, Crawford DH. The role of EBV in post-transplant malignancies: a review. J Clin Pathol 2000; 53: 24854.
  • 29
    Chetty R, Biddolph S, Gatter K. An immunohistochemical analysis of Reed–Sternberg-like cells in posttransplantation lymphoproliferative disorders: the possible pathogenetic relationship to Reed–Sternberg cells in Hodgkin's disease and Reed–Sternberg-like cells in non-Hodgkin's lymphomas and reactive conditions. Hum Pathol 1997; 28: 4938.
  • 30
    Glaser SL, Dorfman RF, Clarke CA. Expert review of the diagnosis and histologic classification of Hodgkin disease in a population-based cancer registry: interobserver reliability and impact on incidence and survival rates. Cancer 2001; 92: 21824.
  • 31
    Jarrett RF, Krajewski AS, Angus B et al . The Scotland and Newcastle epidemiological study of Hodgkin's disease: impact of histopathological review and EBV status on incidence estimates. J Clin Pathol 2003; 56: 81116.
  • 32
    Bargou RC, Emmerich F, Krappmann D et al . Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin's disease tumor cells. J Clin Invest 1997; 100: 29619.
  • 33
    Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996; 14: 64983.
  • 34
    Kaye KM, Devergne O, Harada JN et al . Tumor necrosis factor receptor associated factor 2 is a mediator of NF-kappa B activation by latent infection membrane protein 1, the Epstein–Barr virus transforming protein. Proc Natl Acad Sci USA 1996; 93: 1108590.