• 1
    Llovet JM, Ricci S, Mazzaferro V et al . Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 37890.
  • 2
    Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 2006; 6: 67487.
  • 3
    Ince N, Wands JR. The increasing incidence of hepatocellular carcinoma. N Engl J Med 1999; 340: 7989.
  • 4
    Arii S, Yamaoka Y, Futagawa S et al . Results of surgical and nonsurgical treatment for small-sized hepatocellular carcinomas: a retrospective and nationwide survey in Japan. The Liver Cancer Study Group of Japan. Hepatology 2000; 32: 12249.
  • 5
    Tanaka S, Sugimachi K, Maehara S et al . Oncogenic signal transduction and therapeutic strategy for hepatocellular carcinoma. Surgery 2002; 131: S1427.
  • 6
    Zhu AX. Development of sorafenib and other molecularly targeted agents in hepatocellular carcinoma. Cancer 2008; 112: 2509.
  • 7
    Tanaka S, Arii S. Current status of perspective of antiangiogenic therapy for cancer: hepatocellular carcinoma. Int J Clin Oncol 2006; 11: 829.
  • 8
    Hopfner M, Schuppan D, Scherubl H. Growth factor receptors and related signalling pathways as targets for novel treatment strategies of hepatocellular cancer. World J Gastroenterol 2008; 14: 114.
  • 9
    Tanaka S, Sugimachi K, Yamashita Yi et al . Tie2 vascular endothelial receptor expression and function in hepatocellular carcinoma. Hepatology 2002; 35: 8617.
  • 10
    Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 2006; 312: 54960.
  • 11
    Tammela T, Enholm B, Alitalo K, Paavonen K. The biology of vascular endothelial growth factors. Cardiovasc Res 2005; 65: 55063.
  • 12
    Mise M, Arii S, Higashituji H et al . Clinical significance of vascular endothelial growth factor and basic fibroblast growth factor gene expression in liver tumor. Hepatology 1996; 23: 45564.
  • 13
    Ng IO, Poon RT, Lee JM, Fan ST, Ng M, Tso WK. Microvessel density, vascular endothelial growth factor and its receptors Flt-1 and Flk-1/KDR in hepatocellular carcinoma. Am J Clin Pathol 2001; 116: 83845.
  • 14
    Li XM, Tang ZY, Zhou G, Liu YK, Ye SL. Significance of vascular endothelial growth factor mRNA expression in invasion and metastasis of hepatocellular carcinoma. J Exp Clin Cancer Res 1998; 17: 1317.
  • 15
    El Assal ON, Yamanoi A, Soda Y et al . Clinical significance of microvessel density and vascular endothelial growth factor expression in hepatocellular carcinoma and surrounding liver: possible involvement of vascular endothelial growth factor in the angiogenesis of cirrhotic liver. Hepatology 1998; 27: 155462.
  • 16
    Sugimachi K, Tanaka S, Taguchi K, Aishima S, Shimada M, Tsuneyoshi M. Angiopoietin switching regulates angiogenesis and progression of human hepatocellular carcinoma. J Clin Pathol 2003; 56: 85460.
  • 17
    Yasuda S, Arii S, Mori A et al . Hexokinase II and VEGF expression in liver tumors: correlation with hypoxia-inducible factor 1 alpha and its significance. J Hepatol 2004; 40: 11723.
  • 18
    Von Marschall Z, Cramer T, Hocker M, Finkenzeller G, Wiedenmann B, Rosewicz S. Dual mechanism of vascular endothelial growth factor upregulation by hypoxia in human hepatocellular carcinoma. Gut 2001; 48: 8796.
  • 19
    Tsukamoto A, Kaneko Y, Yoshida T, Ichinose M, Kimura S. Regulation of angiogenesis in human hepatomas: possible involvement of p53-inducible inhibitor of vascular endothelial cell proliferation. Cancer Lett 1999; 141: 7984.
  • 20
    Lee SW, Lee YM, Bae SK, Murakami S, Yun Y, Kim KW. Human hepatitis B virus X protein is a possible mediator of hypoxia-induced angiogenesis in hepatocarcinogenesis. Biochem Biophys Res Commun 2000; 268: 45661.
  • 21
    Tanaka S, Mori M, Sakamoto Y, Makuuchi M, Sugimachi K, Wands JR. Biologic significance of angiopoietin-2 expression in human hepatocellular carcinoma. J Clin Invest 1999; 103: 3415.
  • 22
    Holash J, Maisonpierre PC, Compton D et al . Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999; 284: 19948.
  • 23
    Schmitt M, Horbach A, Kubitz R, Frilling A, Haussinger D. Disruption of hepatocellular tight junctions by vascular endothelial growth factor (VEGF): a novel mechanism for tumor invasion. J Hepatol 2004; 41: 27483.
  • 24
    Arii S. Role of vascular endothelial growth factor on the invasive potential of hepatocellular carcinoma. J Hepatol 2004; 41: 3335.
  • 25
    Kaplan RN, Riba RD, Zacharoulis S et al . VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005; 438: 8207.
  • 26
    Hiratsuka S, Watanabe A, Aburatani H, Maru Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 2006; 8: 136975.
  • 27
    Gao D, Nolan DJ, Mellick AS, Bambino K, McDonnell K, Mittal V. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 2008; 319: 1958.
  • 28
    Wilhelm SM, Carter C, Tang L et al . BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64: 7099109.
  • 29
    Mendel DB, Laird AD, Xin X et al . In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 2003; 9: 32737.
  • 30
    Faivre SJ, Raymond E, Douillard JBE et al . Assessment of safety and drug-induced tumor necrosis with sunitinib in patients (pts) with unresectable hepatocellular carcinoma (HCC). J Clin Oncol 2007; 25 (18S): 3546.
  • 31
    Wood JM, Bold G, Buchdunger E et al . PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res 2000; 60: 217889.
  • 32
    Liu Y, Poon RT, Li Q, Kok TW, Lau C, Fan ST. Both antiangiogenesis- and angiogenesis-independent effects are responsible for hepatocellular carcinoma growth arrest by tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res 2005; 65: 36919.
  • 33
    Koch I, Baron A, Roberts S et al . Influence of hepatic dysfunction on safety, tolerability, and pharmacokinetics of PTK787/ZK 222584 in patients with unresectable hepatocellular carcinoma (HCC). J Clin Oncol 2005; 23 (16S): 4134.
  • 34
    Wedge SR, Kendrew J, Hennequin LF et al . AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res 2005; 65: 4389400.
  • 35
    Alberts SR, Morlan BW, Kim GP et al . NCCTG phase II trial (N044J) of AZD2171 for patients with hepatocellular carcinoma (HCC)-interim review of toxicity. 2007 Gastrointestinal Cancer Symposium; 19–21 Jan 2007, Orlando, FL, USA. Abstract 186.
  • 36
    Laird AD, Vajkoczy P, Shawver LK et al . SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res 2000; 60: 415260.
  • 37
    Kanai F, Yoshida H, Teratani T et al . New feasibility study design with hepatocellular carcinoma: A phase I/II study of TSU-68, an oral angiogenesis inhibitor. J Clin Oncol 2006; 24 (18S): 4145.
  • 38
    Hurwitz H, Fehrenbacher L, Novotny W et al . Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350: 233542.
  • 39
    Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307: 5862.
  • 40
    Schwartz JD, Schwartz M, Lehrer D et al . Bevacizumab in unresectable hepatocellular carcinoma (HCC) for patients without metastasis and without invasion of the portal vein. J Clin Oncol 2006; 24 (18S): 4144.
  • 41
    Malka D, Dromain C, Farace F et al . Bevacizumab in patients (pts) with advanced hepatocellular carcinoma (HCC): preliminary results of a phase II study with circulating endothelial cell (CEC) monitoring. J Clin Oncol 2007; 25 (18S): 4570.
  • 42
    Zhu AX, Blaszkowsky LS, Ryan DP et al . Phase II study of gemcitabine and oxaliplatin in combination with bevacizumab in patients with advanced hepatocellular carcinoma. J Clin Oncol 2006; 24: 1898903.
  • 43
    Normanno N, De Luca A, Bianco C et al . Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 2006; 366: 216.
  • 44
    Yamaguchi R, Yano H, Iemura A, Ogasawara S, Haramaki M, Kojiro M. Expression of vascular endothelial growth factor in human hepatocellular carcinoma. Hepatology 1998; 28: 6877.
  • 45
    Couzin J. Cancer drugs. Smart weapons prove tough to design. Science 2002; 298: 5225.
  • 46
    Paez JG, Jänne PA, Lee JC et al . EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304: 14975.
  • 47
    Lynch TJ, Bell DW, Sordella R et al . Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350: 212939.
  • 48
    O'Dwyer PJ, Giantonio BJ, Levy DE, Kauh JS, Fitzgerald DB, Benson AB III. Gefitinib in advanced unresectable hepatocellular carcinoma: results from the Eastern Cooperative Oncology Group's Study E1203. J Clin Oncol 2006; 24 (18S): 4143.
  • 49
    Moyer JD, Barbacci EG, Iwata KK et al . Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res 1997; 57: 483848.
  • 50
    Philip PA, Mahoney MR, Allmer C et al . Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J Clin Oncol 2005; 23: 665763.
  • 51
    Thomas MB, Chadha R, Glover K et al . Phase 2 study of erlotinib in patients with unresectable hepatocellular carcinoma. Cancer 2007; 110: 105967.
  • 52
    Ramanathan RK, Belani CP, Singh DA et al . Phase II study of lapatinib, a dual inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase 1 and 2 (Her2/Neu) in patients (pts) with advanced biliary tree cancer (BTC) or hepatocellular cancer (HCC). A California Consortium (CCC-P) Trial. J Clin Oncol 2006; 24 (18S): 4010.
  • 53
    Prewett M, Rockwell P, Rockwell RF et al . The biologic effects of C225, a chimeric monoclonal antibody to the EGFR, on human prostate carcinoma. J Immunother Emphasis Tumor Immunol 1996; 19: 41927.
  • 54
    Lièvre A, Bachet JB, Boige V et al . KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 2008; 26: 3749.
  • 55
    Zhu AX, Stuart K, Blaszkowsky LS et al . Phase 2 study of cetuximab in patients with advanced hepatocellular carcinoma. Cancer 2007; 110: 581589.
  • 56
    Gruenwald V, Wilkens L, Gebel M et al . A phase II open-label study of cetuximab in unresectable hepatocellular carcinoma: final results. J Clin Oncol 2007; 25 (18S): 4598.
  • 57
    Louafi S, Hebbar M, Rosmorduc O et al . Gemcitabine, oxaliplatin (GEMOX) and cetuximab for treatment of hepatocellular carcinoma (HCC): results of the phase II study ERGO. J Clin Oncol 2007; 25 (18S): 4594.
  • 58
    Sachdev D, Yee D. Disrupting insulin-like growth factor signaling as a potential cancer therapy. Mol Cancer Ther 2007; 6: 112.
  • 59
    Scharf JG, Braulke T. The role of the IGF axis in hepatocarcinogenesis. Horm Metab Res 2003; 35: 68593.
  • 60
    Tanaka S, Ito T, Wands JR. Neoplastic transformation induced by insulin receptor substrate-1 overexpression requires an interaction with Grb2 and Syp signaling molecules. J Biol Chem 1996; 271: 14 61016.
  • 61
    Tanaka S, Smidt EV, Mohr L, Sugimachi K, Wands JR. Biological effects of human insulin receptor substrate-1 overexpression in hepatocytes. Hepatology 1997; 26: 598604.
  • 62
    Tanaka S, Wands JR. A carboxy-terminal truncated IRS-1 dominant negative protein reverses the human hepatocellular carcinoma malignant phenotype. J Clin Invest 1996; 98: 21008.
  • 63
    Tanaka S, Wands JR. Insulin receptor substrate-1 overexpression in human hepatocellular carcinoma cells prevents transforming growth factor-β1 induced apoptosis. Cancer Res 1996; 56: 33914.
  • 64
    Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin RTK activity in TNF-α- and obesity-induced insulin resistance. Science 1996; 271: 6658.
  • 65
    Feng Y, Zhu Z, Xiao X, Choudhry V, Barrett JC, Dimitrov DS. Novel human monoclonal antibodies to insulin-like growth factor (IGF)-II that potently inhibit the IGF receptor type I signal transduction function. Mol Cancer Ther 2006; 5: 11420.
  • 66
    Burtrum D, Zhu Z, Lu D et al . A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Res 2003; 63: 891221.
  • 67
    Garber K. IGF-1: old growth factor shines as new drug target. J Natl Cancer Inst 2005; 97: 7902.
  • 68
    Desbois-Mouthon C, Cacheux W, Blivet-Van Eggelpoel MJ et al . Impact of IGF-1R/EGFR cross-talks on hepatoma cell sensitivity to gefitinib. Int J Cancer 2006; 119: 255766.
  • 69
    Pawson T. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 2004; 116: 191203.
  • 70
    Macdonald JS, McCoy S, Whitehead RP et al . A phase II study of farnesyl transferase inhibitor R115777 in pancreatic cancer: a Southwest oncology group (SWOG 9924) study. Invest New Drugs 2005; 23: 4857.
  • 71
    Schagdarsurengin U, Wilkens L, Steinemann D et al . Frequent epigenetic inactivation of the RASSF1A gene in hepatocellular carcinoma. Oncogene 2003; 22: 186671.
  • 72
    Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 2006; 6: 67487.
  • 73
    Luo J, Manning BD, Cantley LC. Targeting the PI3K–Akt pathway in human cancer: rationale and promise. Cancer Cell 2003; 4: 25762.
  • 74
    Chiang GG, Abraham RT. Targeting the mTOR signaling network in cancer. Trends Mol Med 2007; 13: 43342.
  • 75
    Frost P, Shi Y, Hoang B, Lichtenstein A. AKT activity regulates the ability of mTOR inhibitors to prevent angiogenesis and VEGF expression in multiple myeloma cells. Oncogene 2007; 26: 225562.
  • 76
    Raymond E, Alexandre J, Faivre S et al . Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol 2004; 22: 233647.
  • 77
    Beuvink I, Boulay A, Fumagalli S et al . The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell 2005; 120: 74759.
  • 78
    Luo JL, Kamata H, Karin M. IKK/NF-κB signaling: balancing life and death – a new approach to cancer therapy. J Clin Invest 2005; 115: 262532.
  • 79
    Maeda S, Kamata H, Luo JL, Leffert H, Karin M. IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 2005; 121: 97790.
  • 80
    Rajkumar SV, Richardson PG, Hideshima T, Anderson KC. Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 2005; 23: 6309.
  • 81
    Teicher BA, Ara G, Herbst R, Palombella VJ, Adams J. The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res 1999; 5: 263845.
  • 82
    Hegewisch-Becker S, Sterneck M, Schubert U et al . Phase I/II trial of botrezomib in patients with unresectable hepatocellular carcinoma. J Clin Oncol 2004; 22 (15S): 4089.
  • 83
    Malumbres M, Barbacid M. Cell cycle kinases in cancer. Curr Opin Genet Dev 2007; 17: 605.
  • 84
    Keen N, Taylor S. Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 2004; 4: 92736.
  • 85
    Lee CY, Andersen RO, Cabernard C et al . Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes Dev 2006; 20: 346474.
  • 86
    Ruchaud S, Carmena M, Earnshaw WC. Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 2007; 8: 798812.
  • 87
    Tanaka S, Noguchi N, Ochiai T et al . Outcomes and recurrence of initially resection of hepatocellular carcinoma meeting Milan criteria: Rationale for partial hepatectomy as first strategy. J Am Coll Surg 2007; 204: 16.
  • 88
    Tanaka S, Arii S, Yasen M et al . Aurora kinase B is a predictive factor for the aggressive recurrence of hepatocellular carcinoma after curative hepatectomy. Br J Surg 2008; 95: 61119.
  • 89
    Gadea BB, Ruderman JV. Aurora kinase inhibitor ZM447439 blocks chromosome-induced spindle assembly, the completion of chromosome condensation, and the establishment of the spindle integrity checkpoint in Xenopus egg extracts. Mol Biol Cell 2005; 16: 130518.
  • 90
    Hauf S, Cole RW, LaTerra S et al . The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore–microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 2003; 161: 28194.
  • 91
    Harrington EA, Bebbington D, Moore J et al . VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 2004; 10: 2627.
  • 92
    Soncini C, Carpinelli P, Gianellini L et al . PHA-680632, a novel Aurora kinase inhibitor with potent antitumoral activity. Clin Cancer Res 2006; 12: 40809.
  • 93
    Hoar K, Chakravarty A, Rabino C et al . MLN8054, a small-molecule inhibitor of Aurora A, causes spindle pole and chromosome congression defects leading to aneuploidy. Mol Cell Biol 2007; 27: 451325.
  • 94
    Wilkinson RW, Odedra R, Heaton SP et al . AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin Cancer Res 2007; 13: 36828.
  • 95
    Girdler F, Gascoigne KE, Eyers PA et al . Validating Aurora B as an anti-cancer drug target. J Cell Sci 2006; 119: 366475.
  • 96
    Vakifahmetoglu V, Olsson M, Zhivotovsky B. Death through a tragedy: mitotic catastrophe. Cell Death Differ 2008; 15: 115362.