SEARCH

SEARCH BY CITATION

References

  • 1
    Morishita K, Parker DS, Mucenski ML, Jenkins NA, Copeland NG, Ihle JN. Retroviral activation of a novel gene encoding a zinc finger protein in IL-3-dependent myeloid leukemia cell lines. Cell 1988; 54: 83140.
  • 2
    Mucenski ML, Taylor BA, Ihle JN et al . Identification of a common ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid tumors. Mol Cell Biol 1988; 8: 3018.
  • 3
    Morishita K, Parganas E, Bartholomew C et al . The human Evi-1 gene is located on chromosome 3q24-q28 but is not rearranged in three cases of acute nonlymphocytic leukemias containing t(3;5)(q25;q34) translocations. Oncogene Res 1990; 5: 22131.
  • 4
    Wieser R. The oncogene and developmental regulator EVI1: expression, biochemical properties, and biological functions. Gene 2007; 396: 34657.
  • 5
    Morishita K, Parganas E, Douglass EC, Ihle JN. Unique expression of the human Evi-1 gene in an endometrial carcinoma cell line: sequence of cDNAs and structure of alternatively spliced transcripts. Oncogene 1990; 5: 96371.
  • 6
    Matsugi T, Morishita K, Ihle JN. Identification, nuclear localization, and DNA-binding activity of the zinc finger protein encoded by the Evi-1 myeloid transforming gene. Mol Cell Biol 1990; 10: 125964.
  • 7
    Bordereaux D, Fichelson S, Tambourin P, Gisselbrecht S. Alternative splicing of the Evi-1 zinc finger gene generates mRNAs which differ by the number of zinc finger motifs. Oncogene 1990; 5: 9257.
  • 8
    Fears S, Mathieu C, Zeleznik-Le N, Huang S, Rowley JD, Nucifora G. Intergenic splicing of MDS1 and EVI1 occurs in normal tissues as well as in myeloid leukemia and produces a new member of the PR domain family. Proc Natl Acad Sci USA 1996; 93: 16427.
  • 9
    Mitani K, Ogawa S, Tanaka T et al . Generation of the AML1-EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. EMBO J 1994; 13: 50410.
  • 10
    Nitta E, Izutsu K, Yamaguchi Y et al . Oligomerization of Evi-1 regulated by the PR domain contributes to recruitment of corepressor CtBP 2005.Oncogene 2005; 24: 616573.
  • 11
    Perkins AS, Fishel R, Jenkins NA, Copeland NG. Evi-1, a murine zinc finger proto-oncogene, encodes a sequence-specific DNA-binding protein. Mol Cell Biol 1991; 11: 266574.
  • 12
    Delwel R, Funabiki T, Kreider BL, Morishita K, Ihle JN. Four of the seven zinc fingers of the Evi-1 myeloid-transforming gene are required for sequence-specific binding to GA(C/T)AAGA(T/C)AAGATAA. Mol Cell Biol 1993; 13: 4291300.
  • 13
    Morishita K, Suzukawa K, Taki T, Ihle JN, Yokota J. EVI-1 zinc finger protein works as a transcriptional activator via binding to a consensus sequence of GACAAGATAAGATAAN1-28 CTCATCTTC. Oncogene 1995; 10: 19617.
  • 14
    Yuasa H, Oike Y, Iwama A et al . Oncogenic transcription factor Evi1 regulates hematopoietic stem cell proliferation through GATA-2 expression. EMBO J 2005; 24: 197687.
  • 15
    Yatsula B, Lin S, Read AJ et al . Identification of binding sites of EVI1 in mammalian cells. J Biol Chem 2005; 280: 30 71222.
  • 16
    Kreider BL, Orkin SH, Ihle JN. Loss of erythropoietin responsiveness in erythroid progenitors due to expression of the Evi-1 myeloid-transforming gene. Proc Natl Acad Sci USA 1993; 90: 64548.
  • 17
    Izutsu K, Kurokawa M, Imai Y, Maki K, Mitani K, Hirai H. The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood 2001; 97: 281522.
  • 18
    Palmer S, Brouillet JP, Kilbey A et al . Evi-1 transforming and repressor activities are mediated by CtBP co-repressor proteins. J Biol Chem 2001; 276: 25 83440.
  • 19
    Vinatzer U, Taplick J, Seiser C, Fonatsch C, Wieser R. The leukaemia-associated transcription factors EVI-1 and MDS1/EVI1 repress transcription and interact with histone deacetylase. Br J Haematol 2001; 114: 56673.
  • 20
    Chakraborty S, Senyuk V, Sitailo S, Chi Y, Nucifora G. Interaction of EVI1 with cAMP-responsive element-binding protein-binding protein (CBP) and p300/CBP-associated factor (P/CAF) results in reversible acetylation of EVI1 and in co-localization in nuclear speckles. J Biol Chem 2001; 276: 44 93643.
  • 21
    Spensberger D, Delwel R. A novel interaction between the proto-oncogene Evi1 and histone methyltransferases, SUV39H1 and G9a. FEBS Lett 2008; 582: 27617.
  • 22
    Cattaneo F, Nucifora G. EVI1 recruits the histone methyltransferase SUV39H1 for transcription repression. J Cell Biochem 2008; 105: 34452.
  • 23
    Kurokawa M, Mitani K, Irie K et al . The oncoprotein Evi-1 represses TGF-β signalling by inhibiting Smad3. Nature 1998; 394: 926.
  • 24
    Sood R, Talwar-Trikha A, Chakrabarti SR, Nucifora G. MDS1/EVI1 enhances TGF-β1 signaling and strengthens its growth-inhibitory effect but the leukemia-associated fusion protein AML1/MDS1/EVI1, product of the t(3;21), abrogates growth-inhibition in response to TGF-β1. Leukemia 1999; 13: 34857.
  • 25
    Alliston T, Ko TC, Cao Y et al . Repression of BMP and activin-inducible transcription by Evi-1. J Biol Chem 2005; 280: 2422737.
  • 26
    Kurokawa M, Mitani K, Yamagata T et al . The evi-1 oncoprotein inhibits c-Jun N-terminal kinase and prevents stress-induced cell death. EMBO J 2000; 19: 295868.
  • 27
    Buonamici S, Li D, Mikhail FM et al . EVI1 abrogates interferon-α response by selectively blocking PML induction. J Biol Chem 2005; 280: 42836.
  • 28
    Liu Y, Chen L, Ko TC, Fields AP, Thompson EA. Evi1 is a survival factor which conveys resistance to both TGFβ- and taxol-mediated cell death via PI3K/AKT. Oncogene 2006; 25: 356575.
  • 29
    Tanaka T, Nishida J, Mitani K, Ogawa S, Yazaki Y, Hirai H. Evi-1 raises AP-1 activity and stimulates c-fos promoter transactivation with dependence on the second zinc finger domain. J Biol Chem 1994; 269: 24 0206.
  • 30
    Sato T, Goyama S, Nitta E et al . Evi-1 promotes para-aortic splanchnopleural hematopoiesis through upregulation of GATA-2 and repression of TGF-β signaling. Cancer Sci 2008; 99: 140713.
  • 31
    Hoyt PR, Bartholomew C, Davis AJ et al . The Evi1 proto-oncogene is required at midgestation for neural, heart, and paraxial mesenchyme development. Mech Dev 1997; 65: 5570.
  • 32
    Goyama S, Yamamoto G, Shimabe M et al . Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell 2008; 3: 20720.
  • 33
    Morishita K, Parganas E, Matsugi T, Ihle JN. Expression of the Evi-1 zinc finger gene in 32Dc13 myeloid cells blocks granulocytic differentiation in response to granulocyte colony-stimulating factor. Mol Cell Biol 1992; 12: 1839.
  • 34
    Laricchia-Robbio L, Nucifora G. Significant increase of self-renewal in hematopoietic cells after forced expression of EVI1. Blood Cells Mol Dis 2008; 40: 1417.
  • 35
    Buonamici S, Li D, Chi Y et al . EVI1 induces myelodysplastic syndrome in mice. J Clin Invest 2004; 114: 71319.
  • 36
    Laricchia-Robbio L, Fazzina R, Li D et al . Point mutations in two EVI1 Zn fingers abolish EVI1–GATA1 interaction and allow erythroid differentiation of murine bone marrow cells. Mol Cell Biol 2006; 26: 765866.
  • 37
    Sitailo S, Sood R, Barton K, Nucifora G. Forced expression of the leukemia-associated gene EVI1 in ES cells: a model for myeloid leukemia with 3q26 rearrangements. Leukemia 1999; 13: 163945.
  • 38
    Shimizu S, Nagasawa T, Katoh O, Komatsu N, Yokota J, Morishita K. EVI1 is expressed in megakaryocyte cell lineage and enforced expression of EVI1 in UT-7/GM cells induces megakaryocyte differentiation. Biochem Biophys Res Commun 2002; 292: 60916.
  • 39
    Metais JY, Dunbar CE. The MDS1–EVI1 gene complex as a retrovirus integration site: impact on behavior of hematopoietic cells and implications for gene therapy. Mol Ther 2008; 16: 43949.
  • 40
    Ott MG, Schmidt M, Schwarzwaelder K et al . Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1–EVI1, PRDM16 or SETBP1. Nat Med 2006; 12: 4019.
  • 41
    Calmels B, Ferguson C, Laukkanen MO et al . Recurrent retroviral vector integration at the Mds1/Evi1 locus in nonhuman primate hematopoietic cells. Blood 2005; 106: 25303.
  • 42
    Kustikova O, Fehse B, Modlich U et al . Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science 2005; 308: 11714.
  • 43
    Louz D, Van Den Broek M, Verbakel S et al . Erythroid defects and increased retrovirally-induced tumor formation in Evi1 transgenic mice. Leukemia 2000; 14: 187684.
  • 44
    Cuenco GM, Ren R. Both AML1 and EVI1 oncogenic components are required for the cooperation of AML1/MDS1/EVI1 with BCR/ABL in the induction of acute myelogenous leukemia in mice. Oncogene 2004; 23: 56979.
  • 45
    Jin G, Yamazaki Y, Takuwa M et al . Trib1 and Evi1 cooperate with Hoxa and Meis1 in myeloid leukemogenesis. Blood 2007; 109: 39984005.
  • 46
    Watanabe-Okochi N, Kitaura J, Ono R et al . AML1 mutations induced MDS and MDS/AML in a mouse BMT model. Blood 2008; 111: 4297308.
  • 47
    Peeters P, Wlodarska I, Baens M et al . Fusion of ETV6 to MDS1/EVI1 as a result of t(3;12)(q26;p13) in myeloproliferative disorders. Cancer Res 1997; 57: 5649.
  • 48
    Nucifora G, Begy CR, Kobayashi H et al . Consistent intergenic splicing and production of multiple transcripts between AML1 at 21q22 and unrelated genes at 3q26 in (3;21)(q26;q22) translocations. Proc Natl Acad Sci USA 1994; 91: 40048.
  • 49
    Morishita K, Parganas E, William CL et al . Activation of EVI1 gene expression in human acute myelogenous leukemias by translocations spanning 300–400 kilobases on chromosome band 3q26. Proc Natl Acad Sci USA 1992; 89: 393741.
  • 50
    Suzukawa K, Parganas E, Gajjar A et al . Identification of a breakpoint cluster region 3′ of the ribophorin I gene at 3q21 associated with the transcriptional activation of the EVI1 gene in acute myelogenous leukemias with inv(3)(q21q26). Blood 1994; 84: 26818.
  • 51
    Pintado T, Ferro MT, San Roman C, Mayayo M, Larana JG. Clinical correlations of the 3q21;q26 cytogenetic anomaly. A leukemic or myelodysplastic syndrome with preserved or increased platelet production and lack of response to cytotoxic drug therapy. Cancer 1985; 55: 53541.
  • 52
    Valk PJ, Verhaak RG, Beijen MA et al . Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 161728.
  • 53
    Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, Van Putten WL et al . High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood 2003; 101: 83745.
  • 54
    Lugthart S, Van Drunen E, Van Norden Y et al . High EVI1 levels predict adverse outcome in acute myeloid leukemia: prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated. Blood 2008; 111: 432937.
  • 55
    Haas K, Kundi M, Sperr WR et al . Expression and prognostic significance of different mRNA 5′-end variants of the oncogene EVI1 in 266 patients with de novo AML. EVI1 and MDS1/EVI1 overexpression both predict short remission duration. Genes Chromosomes Cancer 2008; 47: 28898.
  • 56
    Shackelford D, Kenific C, Blusztajn A, Waxman S, Ren R. Targeted degradation of the AML1/MDS1/EVI1 oncoprotein by arsenic trioxide. Cancer Res 2006; 66: 11 3609.
  • 57
    Raza A, Buonamici S, Lisak L et al . Arsenic trioxide and thalidomide combination produces multi-lineage hematological responses in myelodysplastic syndromes patients, particularly in those with high pre-therapy EVI1 expression. Leuk Res 2004; 28: 791803.