• 1
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74108.
  • 2
    Brinkman BM, Wong DT. Disease mechanism and biomarkers of oral squamous cell carcinoma. Curr Opin Oncol 2006; 18: 22833.
  • 3
    Ha PK, Califano JA. Promoter methylation and inactivation of tumour-suppressor genes in oral squamous-cell carcinoma. Lancet Oncol 2006; 7: 7782.
  • 4
    Martin CL, Reshmi SC, Ried T et al . Chromosomal imbalances in oral squamous cell carcinoma: examination of 31 cell lines and review of the literature. Oral Oncol 2008; 44: 36982.
  • 5
    Schwab M. Oncogene amplification in solid tumors. Semin Cancer Biol 1999; 9: 31925.
  • 6
    Savelyeva L, Schwab M. Amplification of oncogenes revisited: from expression profiling to clinical application. Cancer Lett 2001; 167: 11523.
  • 7
    Pinkel D, Segraves R, Sudar D et al . High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 1998; 20: 20711.
  • 8
    Inazawa J, Inoue J, Imoto I. Comparative genomic hybridization (CGH)-arrays pave the way for identification of novel cancer-related genes. Cancer Sci 2004; 95: 55963.
  • 9
    Suzuki E, Imoto I, Pimkhaokham A et al . PRTFDC1, a possible tumor-suppressor gene, is frequently silenced in oral squamous-cell carcinomas by aberrant promoter hypermethylation. Oncogene 2007; 26: 792132.
  • 10
    Cheng JQ, Godwin AK, Bellacosa A et al . AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci USA 1992; 89: 926771.
  • 11
    Kallioniemi A, Kallioniemi OP, Piper J et al . Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci USA 1994; 91: 215660.
  • 12
    Bellacosa A, De Feo D, Godwin AK et al . Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer 1995; 64: 2805.
  • 13
    Eswaran J, Soundararajan M, Knapp S. Targeting group II PAKs in cancer and metastasis. Cancer Metastasis Rev 2009; 28: 20917.
  • 14
    Japan Society for Head and Neck Cancer. General Rules for Clinical Studies on Head and Neck Cancer, 3rd edn. Tokyo: Kanahara, 2001.
  • 15
    Sobin LH, Wittekind C. In: International Union Against Cancer (UICC). TNM Classification of Malignant Tumours, 6th edn. New York: Wiley–Liss, 2002; 1952.
  • 16
    Inoue J, Otsuki T, Hirasawa A et al . Overexpression of PDZK1 within the 1q12-q22 amplicon is likely to be associated with drug-resistance phenotype in multiple myeloma. Am J Pathol 2004; 165: 7181.
  • 17
    Callow MG, Clairvoyant F, Zhu S et al . Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines. J Biol Chem 2002; 277: 5508.
  • 18
    Huntsman DG, Chin SF, Muleris M et al . MLL2, the second human homolog of the Drosophila trithorax gene, maps to 19q13.1 and is amplified in solid tumor cell lines. Oncogene 1999; 18: 797584.
  • 19
    Richter J, Wagner U, Kononen J et al . High-throughput tissue microarray analysis of cyclin E gene amplification and overexpression in urinary bladder cancer. Am J Pathol 2000; 157: 78794.
  • 20
    Tang TC, Sham JS, Xie D et al . Identification of a candidate oncogene SEI-1 within a minimal amplified region at 19q13.1 in ovarian cancer cell lines. Cancer Res 2002; 62: 715761.
  • 21
    Deng X, Ewton DZ, Li S et al . The kinase Mirk/Dyrk1B mediates cell survival in pancreatic ductal adenocarcinoma. Cancer Res 2006; 66: 414958.
  • 22
    Moniaux N, Nemos C, Schmied BM et al . The human homologue of the RNA polymerase II-associated factor 1 (hPaf1), localized on the 19q13 amplicon, is associated with tumorigenesis. Oncogene 2006; 25: 324757.
  • 23
    Kuuselo R, Savinainen K, Azorsa DO et al . Intersex-like (IXL) is a cell survival regulator in pancreatic cancer with 19q13 amplification. Cancer Res 2007; 67: 19439.
  • 24
    Kikuchi S, Honda K, Tsuda H et al . Expression and gene amplification of actinin-4 in invasive ductal carcinoma of the pancreas. Clin Cancer Res 2008; 14: 534856.
  • 25
    Weinstein IB. Cancer: addiction to oncogenes – The Achilles heal of cancer. Science 2002; 297: 634.
  • 26
    Abo A, Qu J, Cammarano MS et al . PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. EMBO J 1998; 17: 652740.
  • 27
    Eswaran J, Soundararajan M, Kumar R, Knapp S. UnPAKing the class differences among p21-activated kinases. Trends Biochem Sci 2008; 33: 394403.
  • 28
    Qu J, Li X, Novitch BG et al . PAK4 kinase is essential for embryonic viability and for proper neuronal development. Mol Cell Biol 2003; 23: 712233.
  • 29
    Qu J, Cammarano MS, Shi Q, Ha KC, De Lanerolle P, Minden A. Activated PAK4 regulates cell adhesion and anchorage-independent growth. Mol Cell Biol 2001; 21: 352333.
  • 30
    Liu Y, Xiao H, Tian Y et al . The pak4 protein kinase plays a key role in cell survival and tumorigenesis in athymic mice. Mol Cancer Res 2008; 6: 121524.
  • 31
    Cammarano MS, Nekrasova T, Noel B, Minden A. Pak4 induces premature senescence via a pathway requiring p16INK4/p19ARF and mitogen-activated protein kinase signaling. Methods Mol Biol 2005; 25: 953242.
  • 32
    Gnesutta N, Qu J, Minden A. The serine/threonine kinase PAK4 prevents caspase activation and protects cells from apoptosis. J Biol Chem 2001; 276: 144149.