• 1
    Schirrmacher V. Cancer metastasis: experimental approaches, theoretical concepts, and impacts for treatment strategies. Adv Cancer Res 1985; 43: 173.
  • 2
    Steeg PS, De La Rosa A, Flatow U, MacDonald NJ, Benedict M, Leone A. Nm23 and breast cancer metastasis. Breast Cancer Res Treat 1993; 25: 17587.
  • 3
    Steeg PS, Bevilacqua G, Kopper L et al. Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 1988; 80: 2004.
  • 4
    Kang Y, Siegel PM, Shu W et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003; 3: 53749.
  • 5
    Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007; 449: 6828.
  • 6
    Tavazoie SF, Alarcón C, Oskarsson T et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 2008; 451: 14752.
  • 7
    Reya T, Morrison SJ, Clarke MF, Weisman IL. Stem cells, acncer, and cancer stem cells. Nature 2001; 414: 10511.
  • 8
    Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007; 448: 3137.
  • 9
    Podsypanina K, Du YC, Jechlinger M, Beverly LJ, Hambardzumyan D, Varmus H. Seeding and propagation of untransformed mouse mammary cells in the lung. Science 2008; 321: 18414.
  • 10
    Van‘t Veer LJ, Dai H, Van De Vijver MJ et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 5306.
  • 11
    Wang J, Loberg R, Taichman RS. The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev 2006; 25: 57387.
  • 12
    Kaplan RN, Riba RD, Zacharoulis S et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005; 438: 8207.
  • 13
    Hiratsuka S, Watanabe A, Aburatani H, Maru Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 2006; 8: 136975.
  • 14
    Anderson ARA, Weaver AM, Cummings PT, Quaranta V. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 2006; 127: 90515.
  • 15
    Hiratsuka S, Watanabe A, Sakurai Y et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 2008; 10: 134955.
  • 16
    Rosol TJ, Tannehill-Gregg SH, LeRoy BE, Mandl S, Contag CH. Animal models of bone metastasis. Cancer 2003; 97: 74857.
  • 17
    Blouin S, Baslé MF, Chappard D. Rat models of bone metastases. Clin Exp Metastasis 2005; 22: 60514.
  • 18
    Yonou H, Yokose T, Kamijo T et al. Establishment of a novel species- and tissue-specific metastasis model of human prostate cancer in humanized non-obese diabetic/severe combined immunodeficient mice engrafted with human adult lung and bone. Cancer Res 2001; 61: 217782.
  • 19
    Fidler IJ. Metastasis: guantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst 1970; 45: 77382.
  • 20
    Hiratsuka S, Nakamura K, Iwai S et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2002; 2: 289300.
  • 21
    Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS. Calcium-dependent and -independent interactions of the S100 protein family. Biochem J 2006; 396: 20114.
  • 22
    Ehrchen JM, Sunderkötter C, Foell D, Vogl T, Roth J. The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol 2009; 86.
  • 23
    Bouma G, Lam-Tse WK, Wierenga-Wolf AF, Drexhage HA, Versnel MA. Increased serum levels of MRP-8/14 in type 1 diabetes induce an increased expression of CD11b and an enhanced adhesion of circulating monocytes to fibronectin. Diabetes 2004; 53: 197986.
  • 24
    Itou H, Yao M, Fujita I et al. The crystal structure of human MRP14 (S100A9), a Ca(2+)-dependent regulator protein in inflammatory process. J Mol Biol 2002; 316: 26576.
  • 25
    Passey RJ, Williams E, Lichanska AM et al. A null mutation in the inflammation-associated S100 protein S100A8 causes early resorption of the mouse embryo. J Immunol 1999; 163: 220916.
  • 26
    Hermani A, De Servi B, Medunjanin S, Tessier PA, Mayer D. S100A8 and S100A9 activate MAP kinase and NF-κB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Exp Cell Res 2006; 312: 18497.
  • 27
    Robinson MJ, Tessier P, Poulsom R, Hogg N. The S100 family heterodimer, MRP-8/14, binds with high affinity to heparin and heparan sulfate glycosaminoglycans on endothelial cells. J Biol Chem 2002; 277: 365865.
  • 28
    Vogl T, Tenbrock K, Ludwig S et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 2007; 13: 10429.
  • 29
    Gebhardt C, Riehl A, Durchdewald M et al. RAGE signaling sustains inflammation and promotes tumor development. J Exp Med 2008; 205: 27585.
  • 30
    Stern DM, Yan SD, Yan SF, Schmidt AM. Receptor for advanced glycation endproducts (RAGE) and the complications of diabetes. Ageing Res Rev 2002; 1: 115.
  • 31
    Kerkhoff C, Nacken W, Benedyk M, Dagher MC, Sopalla C, Doussiere J. The arachidonic acid-binding protein S100A8/A9 promotes NADPH oxidase activation by interaction with p67phox and Rac-2. FASEB J 2005; 19: 4679.
  • 32
    Zou N, Ao L, Cleveland JC Jr et al. Critical role of extracellular heat shock cognate protein 70 in the myocardial inflammatory response and cardiac dysfunction after global ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2008; 294: H280513.
  • 33
    Fuchs EJ, Matzinger P. Is cancer dangerous to the immune system? Semin Immunol 1996; 8: 27180.
  • 34
    Keller M, Rüegg A, Werner S, Beer HD. Active caspase-1 is a regulator of unconventional protein secretion. Cell 2008; 132: 81831.
  • 35
    Akashi S, Saitoh S, Wakabayashi Y et al. Lipopolysaccharide interaction with cell surface Toll-like receptor 4-MD-2: higher affinity than that with MD-2 or CD14. J Exp Med 2003; 198: 103542.
  • 36
    Gilchrist M, Thorsson V, Li B et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 2006; 441: 1738.
  • 37
    Lu D, Chen J, Hai T. The regulation of ATF3 gene expression by mitogen-activated protein kinases. Biochem J 2007; 401: 55967.
  • 38
    Beutler BA. TLRs and innate immunity. Blood 2009; 113: 1399407.
  • 39
    Bhide MR, Mucha R, Mikula I Jr et al. Novel mutations in TLR genes cause hyporesponsiveness to Mycobacterium avium subsp. paratuberculosis infection. BMC Genet 2009; 10: 21.
  • 40
    Van Zoelen MA, Schouten M, De Vos AF et al. The receptor for advanced glycation end products impairs host defense in pneumococcal pneumonia. J Immunol 2009; 182: 434956.
  • 41
    Suganami T, Tanimoto-Koyama K, Ogawa Y et al. Role of the Toll-like receptor 4/NF-κB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol 2007; 27: 8491.
  • 42
    Jiang D, Liang J, Fan J et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 2005; 11: 11739.
  • 43
    Kim S, Takahashi H, Lin WW et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 2009; 457: 1026.
  • 44
    Chen R, Alvero AB, Silasi DA, Steffensen KD, Mor G. Cancers take their Toll – the function and regulation of Toll-like receptors in cancer cells. Oncogene 2008; 27: 22533.
  • 45
    Kanzler H, Barrat FJ, Hessel EM, Coffman RL. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 2007; 13: 5529.
  • 46
    Broxmeyer HE. Chemokines in hematopoiesis. Curr Opin Hematol 2008; 15: 4958.
  • 47
    Lu DY, Tang CH, Yeh WL et al. SDF-1α up-regulates interleukin-6 through CXCR4, PI3K/Akt, ERK, and NF-κB-dependent pathway in microglia. Eur J Pharmacol 2009; 613: 14654.
  • 48
    Han Y, He T, Huang DR, Pardo CA, Ransohoff RM. TNF-α mediates SDF-1α-induced NF-κ B activation and cytotoxic effects in primary astrocytes. J Clin Invest 2001; 108: 42535.
  • 49
    Ang E, Pavlos NJ, Rea SL et al. Proteasome inhibitors impair RANKL-induced NF-κB activity in osteoclast-like cells via disruption of p62, TRAF6, CYLD, and IκBα signaling cascades. J Cell Physiol 2009; 220: 4509.
  • 50
    Mikami S, Katsube KI, Oya M et al. Increased RANKL expression is related to tumour migration and metastasis of renal cell carcinomas. J Pathol 2009; 218: 530539.
  • 51
    Padua D, Zhang XH, Wang Q et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 2008; 133: 6677.
  • 52
    Guise TA. Parathyroid hormone-related protein and bone metastases. Cancer 1997; 80: 157280.
  • 53
    Massagué J. TGFβ in Cancer. Cell 2008; 134: 21530.
  • 54
    Jones DH, Nakashima T, Sanchez OH et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 2006; 440: 6926.
  • 55
    Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002; 2: 56372.
  • 56
    Saltz LB, Clarke S, Díaz-Rubio E et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 2008; 26: 20139.
  • 57
    Stockmann C, Doedens A, Weidemann A et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 2008; 456: 8148.
  • 58
    Orimo A, Gupta PB, Sgroi DC et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005; 121: 33548.
  • 59
    Deshane J, Chen S, Caballero S et al. Stromal cell-derived factor 1 promotes angiogenesis via a heme oxygenase 1-dependent mechanism. J Exp Med 2007; 204: 60518.
  • 60
    Shojaei F, Wu X, Zhong C et al. Bv8 regulates myeloid-cell-dependent tumor angiogenesis. Nature 2007; 450: 82531.
  • 61
    Hiraoka K, Zenmyo M, Watari K et al. Inhibition of bone and muscle metastases of lung cancer cells by a decrease in the number of monocytes/macrophages. Cancer Sci 2008; 99: 1595602.
  • 62
    Kaplan RN, Psaila B, Lyden D. Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev 2006; 25: 5219.
  • 63
    Shibuya M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol 2006; 39: 46978.
  • 64
    Fragoso R, Pereira T, Wu Y, Zhu Z, Cabeçadas J, Dias S. VEGFR-1 (FLT-1) activation modulates acute lymphoblastic leukemia localization and survival within the bone marrow, determining the onset of extramedullary disease. Blood 2006; 107: 160816.
  • 65
    Maru Y, Yamaguchi S, Shibuya M. Flt-1, a receptor for vascular endothelial growth factor, has transforming and morphogenic potentials. Oncogene 1998; 16: 258595.
  • 66
    Usui R, Shibuya M, Ishibashi S, Maru Y. Ligand-independent activation of VEGF receptor 1 by low density lipoprotein. EMBO Rep 2007; 8: 115561.
  • 67
    Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008; 454: 43644.
  • 68
    Nagai Y, Garrett KP, Ohta S et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 2006; 24: 80112.
  • 69
    Pollard JW. Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol 2008; 84: 62330.
  • 70
    Turer EE, Tavares RM, Mortier E et al. Homeostatic MyD88-dependent signals cause lethal inflammation in the absence of A20. J Exp Med 2008; 205: 45164.
  • 71
    Walser TC, Rifat S, Ma X, Kundu N et al. Antagonism of CXCR3 inhibits lung metastasis in a murine model of metastatic breast cancer. Cancer Res 2006; 66: 77017.
  • 72
    Maru Y. Which came first, tumor cells or macrophages? Cell Adh Migr 2007; 1: 1079.