SEARCH

SEARCH BY CITATION

References

  • 1
    Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455: 10618.
  • 2
    Parsons DW, Jones S, Zhang X et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321: 180712.
  • 3
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, eds. WHO Classification of Tumours of the Central Nervous System. Lyon: IARC, 2007.
  • 4
    Ohgaki H, Dessen P, Jourde B et al. Genetic pathways to glioblastoma: a population-based study. Cancer Res 2004; 64: 68929.
  • 5
    Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 2005; 64: 47989.
  • 6
    Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol 2007; 170: 144553.
  • 7
    Okamoto Y, Di Patre PL, Burkhard C et al. Population-based study on incidence, survival rates, and genetic alterations of low-grade astrocytomas and oligodendrogliomas. Acta Neuropathol 2004; 108: 4956.
  • 8
    Mellinghoff IK, Wang MY, Vivanco I et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 2005; 353: 201224.
  • 9
    Lee MJ, Stephenson DA. Recent developments in neurofibromatosis type 1. Curr Opin Neurol 2007; 20: 13541.
  • 10
    Ekstrand AJ, Sugawa N, James CD, Collins VP. Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc Natl Acad Sci USA 1992; 89: 430913.
  • 11
    Watanabe K, Tachibana O, Sato K, Yonekawa Y, Kleihues P, Ohgaki H. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 1996; 6: 21724.
  • 12
    Tohma Y, Gratas C, Biernat W et al. PTEN (MMAC1) mutations are frequent in primary glioblastomas (de novo) but not in secondary glioblastomas. J Neuropathol Exp Neurol 1998; 57: 6849.
  • 13
    Biernat W, Huang H, Yokoo H, Kleihues P, Ohgaki H. Predominant expression of mutant EGFR (EGFRvIII) is rare in primary glioblastomas. Brain Pathol 2004; 14: 1316.
  • 14
    Huang HS, Nagane M, Klingbeil CK et al. The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling. J Biol Chem 1997; 272: 292735.
  • 15
    Knobbe CB, Merlo A, Reifenberger G. Pten signaling in gliomas. Neuro Oncol 2002; 4: 196211.
  • 16
    Kita D, Yonekawa Y, Weller M, Ohgaki H. PI3KCA alterations in primary (de novo) and secondary glioblastomas. Acta Neuropathol 2007; 113: 295302.
  • 17
    Hermanson M, Funa K, Hartman M et al. Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 1992; 52: 32139.
  • 18
    Reifenberger J, Reifenberger G, Ichimura K, Schmidt EE, Wechsler W, Collins VP. Epidermal growth factor receptor expression in oligodendroglial tumors. Am J Pathol 1996; 149: 2935.
  • 19
    Di Rocco F, Carroll RS, Zhang J, Black PM. Platelet-derived growth factor and its receptor expression in human oligodendrogliomas. Neurosurgery 1998; 42: 3416.
  • 20
    Bogler O, Huang HJ, Kleihues P, Cavenee WK. The p53 gene and its role in human brain tumors. Glia 1995; 15: 30827.
  • 21
    Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13: 150112.
  • 22
    Stott FJ, Bates S, James MC et al. The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J 1998; 17: 500114.
  • 23
    Barak Y, Gottlieb E, Juven Gershon T, Oren M. Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Genes Dev 1994; 8: 173949.
  • 24
    Zauberman A, Flusberg D, Haupt Y, Barak Y, Oren M. A functional p53-responsive intronic promoter is contained within the human mdm2 gene. Nucleic Acids Res 1995; 23: 258492.
  • 25
    Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69: 123745.
  • 26
    Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 1992; 358: 803.
  • 27
    Pomerantz J, Schreiber-Agus N, Liegeois NJ et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 1998; 92: 71323.
  • 28
    Toledo F, Wahl GM. MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int J Biochem Cell Biol 2007; 39: 147682.
  • 29
    Nakamura M, Watanabe T, Klangby U et al. P14Arf deletion and methylation in genetic pathways to glioblastomas. Brain Pathol 2001; 11: 15968.
  • 30
    Biernat W, Kleihues P, Yonekawa Y, Ohgaki H. Amplification and overexpression of MDM2 in primary (de novo) glioblastomas. J Neuropathol Exp Neurol 1997; 56: 1805.
  • 31
    Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP. Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res 1993; 53: 27369.
  • 32
    Zawlik I, Kita D, Vaccarella S, Mittelbronn M, Franceschi S, Ohgaki H. Common polymorphisms in the MDM2 and TP53 genes and the relationship between TP53 mutations and patient outcomes in glioblastomas. Brain Pathol 2009; 19: 18894.
  • 33
    Watanabe T, Yokoo H, Yokoo M, Yonekawa Y, Kleihues P, Ohgaki H. Concurrent inactivation of RB1 and TP53 pathways in anaplastic oligodendrogliomas. J Neuropathol Exp Neurol 2001; 60: 11819.
  • 34
    Biernat W, Tohma Y, Yonekawa Y, Kleihues P, Ohgaki H. Alterations of cell cycle regulatory genes in primary (de novo) and secondary glioblastomas. Acta Neuropathol 1997; 94: 3039.
  • 35
    Narahara K, Kimura S, Kikkawa K et al. Probable assignment of soluble isocitrate dehydrogenase (IDH1) to 2q33.3. Hum Genet 1985; 71: 3740.
  • 36
    Devlin TM. Textbook of Biochemistry with Clinical Correlations. Hoboken, N.J.: Wiley-Liss, 2006.
  • 37
    Geisbrecht BV, Gould SJ. The human PICD gene encodes a cytoplasmic and peroxisomal NADP(+)-dependent isocitrate dehydrogenase. J Biol Chem 1999; 274: 3052733.
  • 38
    Yan H, Parsons DW, Jin G et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009; 360: 76573.
  • 39
    Zhao S, Lin Y, Xu W et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 2009; 324: 2615.
  • 40
    Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, Von Deimling A. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 2008; 116: 597602.
  • 41
    Watanabe T, Nobusawa S, Kleihues P, Ohgaki H. IDH1 Mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 2009; 174: 114953.
  • 42
    Bleeker FE, Lamba S, Leenstra S et al. IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors. Hum Mutat 2009; 30: 711.
  • 43
    Rasheed BK, McLendon RE, Friedman HS et al. Chromosome 10 deletion mapping in human gliomas: a common deletion region in 10q25. Oncogene 1995; 10: 22436.
  • 44
    Karlbom AE, James CD, Boethius J et al. Loss of heterozygosity in malignant gliomas involves at least three distinct regions on chromosome 10. Hum Genet 1993; 92: 16974.
  • 45
    Ichimura K, Schmidt EE, Miyakawa A, Goike HM, Collins VP. Distinct patterns of deletion on 10p and 10q suggest involvement of multiple tumor suppressor genes in the development of astrocytic gliomas of different malignancy grades. Genes Chromosomes Cancer 1998; 22: 915.
  • 46
    Fujisawa H, Reis RM, Nakamura M et al. Loss of heterozygosity on chromosome 10 is more extensive in primary (de novo) than in secondary glioblastomas. Lab Invest 2000; 80: 6572.
  • 47
    Fults D, Pedone CA, Thompson GE et al. Microsatellite deletion mapping on chromosome 10q and mutation analysis of MMAC1, FAS, and MXI1 in human glioblastoma multiforme. Int J Oncol 1998; 12: 90510.
  • 48
    Balesaria S, Brock C, Bower M et al. Loss of chromosome 10 is an independent prognostic factor in high-grade gliomas. Br J Cancer 1999; 81: 13717.
  • 49
    Sasaki H, Zlatescu MC, Betensky RA, Ino Y, Cairncross JG, Louis DN. PTEN is a target of chromosome 10q loss in anaplastic oligodendrogliomas and PTEN alterations are associated with poor prognosis. Am J Pathol 2001; 159: 35967.
  • 50
    Nakamura M, Yang F, Fujisawa H, Yonekawa Y, Kleihues P, Ohgaki H. Loss of heterozygosity on chromosome 19 in secondary glioblastomas. J Neuropathol Exp Neurol 2000; 59: 53943.
  • 51
    Miyakawa A, Ichimura K, Schmidt EE, Varmeh-Ziaie S, Collins VP. Multiple deleted regions on the long arm of chromosome 6 in astrocytic tumours. Br J Cancer 2000; 82: 5439.
  • 52
    Veeriah S, Brennan C, Meng S et al. The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers. Proc Natl Acad Sci U S A 2009; 106: 943540.
  • 53
    Solomon DA, Kim JS, Cronin JC et al. Mutational inactivation of PTPRD in glioblastoma multiforme and malignant melanoma. Cancer Res 2008; 68: 103006.
  • 54
    Nakamura M, Ishida E, Shimada K et al. Frequent LOH on 22q12.3 and TIMP-3 inactivation occur in the progression to secondary glioblastomas. Lab Invest 2005; 85: 16575.
  • 55
    Cairncross JG, Ueki K, Zlatescu MC et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 1998; 90: 14739.
  • 56
    Bauman GS, Ino Y, Ueki K et al. Allelic loss of chromosome 1p and radiotherapy plus chemotherapy in patients with oligodendrogliomas. Int J Radiat Oncol Biol Phys 2000; 48: 82530.
  • 57
    Felsberg J, Erkwoh A, Sabel MC et al. Oligodendroglial tumors: refinement of candidate regions on chromosome arm 1p and correlation of 1p/19q status with survival. Brain Pathol 2004; 14: 12130.
  • 58
    Jenkins RB, Blair H, Ballman KV et al. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res 2006; 66: 985261.
  • 59
    Ransom DT, Ritland SR, Kimmel DW et al. Cytogenetic and loss of heterozygosity studies in ependymomas, pilocytic astrocytomas, and oligodendrogliomas. Genes Chromosomes Cancer 1992; 5: 34856.
  • 60
    Bello MJ, Vaquero J, De Campos JM et al. Molecular analysis of chromosome 1 abnormalities in human gliomas reveals frequent loss of 1p in oligodendroglial tumors. Int J Cancer 1994; 57: 1725.
  • 61
    Smith JS, Tachibana I, Lee HK et al. Mapping of the chromosome 19 q-arm glioma tumor suppressor gene using fluorescence in situ hybridization and novel microsatellite markers. Genes Chromosomes Cancer 2000; 29: 1625.
  • 62
    Law ME, Templeton KL, Kitange G et al. Molecular cytogenetic analysis of chromosomes 1 and 19 in glioma cell lines. Cancer Genet Cytogenet 2005; 160: 114.
  • 63
    Smith JS, Perry A, Borell TJ et al. Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol 2000; 18: 63645.
  • 64
    Cairncross G, Berkey B, Shaw E et al. Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: Intergroup Radiation Therapy Oncology Group Trial 9402. J Clin Oncol 2006; 24: 270714.
  • 65
    Ino Y, Zlatescu MC, Sasaki H et al. Long survival and therapeutic responses in patients with histologically disparate high-grade gliomas demonstrating chromosome 1p loss. J Neurosurg 2000; 92: 98390.
  • 66
    Homma T, Fukushima T, Vaccarella S et al. Correlation among pathology, genotype, and patient outcomes in glioblastoma. J Neuropathol Exp Neurol 2006; 65: 84654.
  • 67
    Tohma Y, Gratas C, Van Meir EG et al. Necrogenesis and Fas/APO-1(CD95) expression in primary (de novo) and secondary glioblastomas. J Neuropathol Exp Neurol 1998; 57: 23945.
  • 68
    Karcher S, Steiner HH, Ahmadi R et al. Different angiogenic phenotypes in primary and secondary glioblastomas. Int J Cancer 2006; 118: 21829.
  • 69
    Godard S, Getz G, Delorenzi M et al. Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res 2003; 63: 661325.
  • 70
    Tso CL, Freije WA, Day A et al. Distinct transcription profiles of primary and secondary glioblastoma subgroups. Cancer Res 2006; 66: 15967.
  • 71
    Reddy SP, Britto R, Vinnakota K et al. Novel glioblastoma markers with diagnostic and prognostic value identified through transcriptome analysis. Clin Cancer Res 2008; 14: 297887.
  • 72
    Somasundaram K, Reddy SP, Vinnakota K et al. Upregulation of ASCL1 and inhibition of Notch signaling pathway characterize progressive astrocytoma. Oncogene 2005; 24: 707383.
  • 73
    Furuta M, Weil RJ, Vortmeyer AO et al. Protein patterns and proteins that identify subtypes of glioblastoma multiforme. Oncogene 2004; 23: 680614.
  • 74
    Huang H, Colella S, Kurrer M, Yonekawa Y, Kleihues P, Ohgaki H. Gene expression profiling of low-grade diffuse astrocytomas by cDNA arrays. Cancer Res 2000; 60: 686874.
  • 75
    Hunter C, Smith R, Cahill DP et al. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res 2006; 66: 398791.
  • 76
    Stupp R, Hegi ME, Gilbert MR, Chakravarti A. Chemoradiotherapy in malignant glioma: standard of care and future directions. J Clin Oncol 2007; 25: 412736.
  • 77
    Pegg AE. Repair of O6-alkylguanine by alkyltransferases. Mutat Res 2000; 462: 83100.
  • 78
    Margison GP, Santibanez Koref MF, Povey AC. Mechanisms of carcinogenicity/chemotherapy by O6-methylguanine. Mutagenesis 2002; 17: 4837.
  • 79
    Kaina B. Mechanisms and consequences of methylating agent-induced SCEs and chromosomal aberrations: a long road traveled and still a far way to go. Cytogenet Genome Res 2004; 104: 7786.
  • 80
    Hegi ME, Diserens AC, Gorlia T et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352: 9971003.
  • 81
    Esteller M, Garcia-Foncillas J, Andion E et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 2000; 343: 13504.
  • 82
    Zawlik I, Vaccarella S, Kita D, Mittelbronn M, Franceschi S, Ohgaki H. Promoter methylation and polymorphisms of the MGMT gene in glioblastomas: a population-based study. Neuroepidemiology 2009; 32: 219.
  • 83
    Paz MF, Yaya-Tur R, Rojas-Marcos I et al. CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas. Clin Cancer Res 2004; 10: 49338.
  • 84
    Criniere E, Kaloshi G, Laigle-Donadey F et al. MGMT prognostic impact on glioblastoma is dependent on therapeutic modalities. J Neurooncol 2007; 83: 1739.
  • 85
    Cahill DP, Levine KK, Betensky RA et al. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin Cancer Res 2007; 13: 203845.
  • 86
    Beier D, Hau P, Proescholdt M et al. CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 2007; 67: 40105.
  • 87
    Bao S, Wu Q, McLendon RE et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444: 75660.
  • 88
    Liu G, Yuan X, Zeng Z et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 2006; 5: 67.
  • 89
    Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 58218.
  • 90
    Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumour initiating cells. Nature 2004; 432: 396401.
  • 91
    Joo KM, Kim SY, Jin X et al. Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest 2008; 88: 80815.
  • 92
    Griguer CE, Oliva CR, Gobin E et al. CD133 is a marker of bioenergetic stress in human glioma. PLoS ONE 2008; 3: e3655.