SEARCH

SEARCH BY CITATION

References

  • 1
    Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 1996; 84: 34557.
  • 2
    Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110: 67387.
  • 3
    Legate KR, Wickström SA, Fässler R. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev 2009; 23: 397418.
  • 4
    Clark EA, Brugge JS. Integrins and signal transduction pathways: the road taken. Science 1995; 268: 2339.
  • 5
    Geiger B, Spatz J, Bershadsky A. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 2009; 10: 2133.
  • 6
    Turner C.E. Paxillin and focal adhesion signalling. Nat Cell Biol 2000; 2: E2316.
  • 7
    Brown MC, Turner CE. Paxillin: adapting to change. Physiol Rev 2004; 84: 131539.
  • 8
    Schaller MD. Paxillin: a focal adhesion-associated adaptor protein. Oncogene 2001; 20: 645972.
  • 9
    Lipsky BP, Beals CR, Staunton DE. Leupaxin is a novel LIM domain protein that forms a complex with PYK2. J Biol Chem 1998; 273: 1170913.
  • 10
    Sundberg-Smith LJ, DiMichele LA, Sayers RL, Mack CP, Taylor JM. The LIM protein leupaxin is enriched in smooth muscle and functions as an serum response factor cofactor to induce smooth muscle cell gene transcription. Circ Res 2008; 102: 150211.
  • 11
    Sahu SN, Nunez S, Bai G, Gupta A. Interaction of Pyk2 and PTP-PEST with leupaxin in prostate cancer cells. Am J Physiol Cell Physiol 2007; 292: C228896.
  • 12
    Kaulfuss S, Grzmil M, Hemmerlein B et al. Leupaxin, a novel coactivator of the androgen receptor, is expressed in prostate cancer and plays a role in adhesion and invasion of prostate carcinoma cells. Mol Endocrinol 2008; 22: 160621.
  • 13
    Gupta A, Lee BS, Khadeer MA et al. Leupaxin is a critical adaptor protein in the adhesion zone of the osteoclast. J Bone Miner Res 2003; 18: 66985.
  • 14
    Chew V, Lam KP. Leupaxin negatively regulates B cell receptor signaling. J Biol Chem 2007; 282: 271819.
  • 15
    Hishiki T, Kawamoto S, Morishita S, Okubo K. BodyMap: a human and mouse gene expression database. Nucleic Acids Res 2000; 28: 1368.
  • 16
    Izawa D, Tanaka T, Saito K et al. Expression profile of active genes in mouse lymph node high endothelial cells. Int Immunol 1999; 11: 198998.
  • 17
    Saito K, Tanaka T, Kanda H et al. Gene expression profiling of mucosal addressin cell adhesion molecule-1 +  high endothelial venule cells (HEV) and identification of a leucine-rich HEV glycoprotein as a HEV marker. J Immunol 2002; 168: 10509.
  • 18
    Mizushima S, Nagata S. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res 1990; 18: 5322.
  • 19
    Mukasa R, Satoh A, Tominaga Y. Development of a cell-free binding assay for rat ICAM-1/LFA-1 interactions using a novel anti-rat LFA-1 monoclonal antibody and comparison with a cell-based assay. J Immunol Methods 1999; 228: 6979.
  • 20
    Richardson A, Malik RK, Hildebrand JD, Parsons JT. Inhibition of cell spreading by expression of the C-terminal domain of focal adhesion kinase (FAK) is rescued by coexpression of Src or catalytically inactive FAK: a role for paxillin tyrosine phosphorylation. Mol Cell Biol 1997; 17: 690614.
  • 21
    Fujita H, Kamiguchi K, Cho D, Shibanuma M, Morimoto C, Tachibana K. Interaction of Hic-5, A senescence-related protein, with focal adhesion kinase. J Biol Chem 1998; 273: 2651621.
  • 22
    Nishiya N, Tachibana K, Shibanuma M, Mashimo JI, Nose K. Hic-5-reduced cell spreading on fibronectin: competitive effects between paxillin and Hic-5 through interaction with focal adhesion kinase. Mol Cell Biol 2001; 21: 533245.
  • 23
    Brown MC, Perrotta JA, Turner CE. Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding. J Cell Biol 1996; 135: 110923.
  • 24
    Thomas SM, Hagel M, Turner CE. Characterization of a focal adhesion protein, Hic-5, that shares extensive homology with paxillin. J Cell Sci 1999; 112: 18190.
  • 25
    Tumbarello DA, Brown MC, Turner CE. The paxillin LD motifs. FEBS Lett 2002; 513: 1148.
  • 26
    Brown MC, Perrotta JA, Turner CE. Serine and threonine phosphorylation of the paxillin LIM domains regulates paxillin focal adhesion localization and cell adhesion to fibronectin. Mol Biol Cell 1998; 9: 180316.
  • 27
    Zhang J, Zhang LX, Meltzer PS, Barrett JC, Trent JM. Molecular cloning of human Hic-5, a potential regulator involved in signal transduction and cellular senescence. Mol Carcinog 2000; 27: 17783.
  • 28
    O’Toole TE, Katagiri Y, Faull RJ et al. Integrin cytoplasmic domains mediate inside-out signal transduction. J Cell Biol 1994; 124: 104759.
  • 29
    Thomas JW, Cooley MA, Broome JM et al. The role of focal adhesion kinase binding in the regulation of tyrosine phosphorylation of paxillin. J Biol Chem 1999; 274: 3668492.
  • 30
    Schaller MD, Parsons JT. pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol Cell Biol 1995; 15: 263545.
  • 31
    Salgia R, Li JL, Lo SH et al. Molecular cloning of human paxillin, a focal adhesion protein phosphorylated by P210BCR/ABL. J Biol Chem 1995; 270: 503947.
  • 32
    Thomas SM, Soriano P, Imamoto A. Specific and redundant roles of Src and Fyn in organizing the cytoskeleton. Nature 1995; 376: 26771.