• Open Access

Glutathione S-transferase M1 inhibits dexamethasone-induced apoptosis in association with the suppression of Bim through dual mechanisms in a lymphoblastic leukemia cell line

Authors


5To whom correspondence should be addressed.
E-mail: skishi@u-fukui.ac.jp

Abstract

(Cancer Sci 2010; 101: 767–773)

Glutathione S-transferase μ (GSTM1) is mainly known as a detoxification enzyme but it has also been shown to be a negative regulator of apoptosis-related signaling cascades. Recently GSTM1 has been reported to be a significant risk factor for hematological relapse in childhood acute lymphoblastic leukemia, although the underlying mechanism remains largely unknown. Glucocorticoids play a crucial role in the treatment of childhood acute lymphoblastic leukemia, therefore we hypothesized that GSTM1 plays important roles in glucocorticoid-induced apoptotic pathways. To clarify the relationship between GSTM1 and drug resistance, GSTM1 was transfected into a T-acute lymphoblastic leukemia cell line, CCRF-CEM (CEM), and we established the GSTM1-expressing cell lines CEM/M1-4 and CEM/M1-9. Transduction of GSTM1 into CEM selectively decreased cellular sensitivity to dexamethasone in a manner that was independent of glutathione conjugation, but was due to apoptosis inhibition. Dexamethasone-induced p38-MAPK and Bim activation were concomitantly suppressed. Interestingly, nuclear factor kappa b (NF-κB) p50 activity was upregulated in GSTM1-expressing CEM. Inhibition of NF-κB by the pharmacological agent BAY11-7082 greatly enhanced the sensitivity of the GSTM1-expressing CEM to dexamethasone and was accompanied by an increase in Bim expression. Thus, we propose that GSTM1, a novel regulator of dexamethasone-induced apoptosis, causes dexamethasone resistance by suppression of Bim through dual mechanisms of both downregulation of p38-MAPK and upregulation of NF-κB p50.

Ancillary