SEARCH

SEARCH BY CITATION

References

  • 1
    Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 2003; 97: 286979.
  • 2
    Perez-Soler R, Priebe W. Anthracycline antibiotics with high liposome entrapment: structural features and biological activity. Cancer Res 1990; 50: 42606.
  • 3
    Dass CR, Walker TL, Burton MA, Decruz EE. Enhanced anticancer therapy mediated by specialized liposomes. J Pharm Pharmacol 1997; 49: 9725.
  • 4
    Gracia AA, Kempf RA, Rogers M, Muggia FM. A phase II study of Doxil (liposomal doxorubicin): lack of activity in poor prognosis soft tissue sarcomas. Ann Oncol 1998; 9: 11313.
  • 5
    Safra T, Muggia F, Jeffers S et al. Pegylated liposomal doxorubicin (Doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol 2000; 11: 102933.
  • 6
    O’Brien MER, Wigler N, Inbar M et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 2004; 15: 4409.
  • 7
    Theodoulou M, Hudis C. Cardiac profiles of liposomal anthracyclines. Greater cardiac safety versus conventional doxorubicin? Cancer 2004; 100: 205263.
  • 8
    Seymour LW, Ferry DR, Kerr DJ et al. Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int J Oncol 2009; 34: 162936.
  • 9
    Duncan R, Vicent MJ, Greco F, Nicholson RI. Polymer-drug conjugates: towards a novel approach for the treatment of endrocine-related cancer. Endocr Relat Cancer 2005; 12: S18999.
  • 10
    Matsumura Y, Kataoka K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci 2009; 100: 5729.
  • 11
    Bae Y, Nishiyama N, Fukushima S, Koyama H, Matsumura Y, Kataoka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem 2005; 16: 12230.
  • 12
    Glück S. The expanding role of epirubicin in the treatment of breast cancer. Cancer Control 2002; 9: 1627.
  • 13
    Bobe I, Shibata N, Saito H, Harada M. Block copolymer for drug complex and pharmaceutical composition. PCT Patent Application WO 2008/047948.
  • 14
    Jaspers JE, Rottenberg S, Jonkers J. Therapeutic options for triple-negative breast cancers with defective homologous recombination. Biochim Biophys Acta 2009; 1796: 26680.
  • 15
    Simonetti RG, Liberati A, Angiolini C, Pagliaro L. Treatment of hepatocellular carcinoma: a systematic review of randomized controlled trials. Ann Oncol 1997; 8: 11736.
  • 16
    Epstein RJ, Leung TW. Reversing hepatocellular carcinoma progression by using networked biological therapies. Clin Cancer Res 2007; 13: 117.
  • 17
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000; 65: 27184.
  • 18
    Charrois GJR, Allen TM. Drug release rate influences the pharmacokinetics, biodistribution, therapeutic activity, and toxicity of pegylated liposomal doxorubicin formulations in murine breast cancer. Biochim Biophys Acta 2004; 1663: 16777.
  • 19
    Kong G, Anyarambhatla G, Petros WP et al. Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Res 2000; 60: 69507.
  • 20
    Laginha KM, Verwoert S, Charrois GJR, Allen TM. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin Cancer Res 2005; 11: 69449.
  • 21
    Duncan R. Designing polymer conjugates as lysosomotropic nanomedicines. Biochem Soc Trans 2007; 35: 5660.
  • 22
    Hovorka O, Etrych T, Subr V, Strohalm J, Ulbrich K, Ríhová B. HPMA based macromolecular therapeutics: internalization, intracellular pathway and cell death depend on the character of covalent bond between the drug and the peptidic spacer and also on spacer composition. J Drug Target 2006; 14: 391403.
  • 23
    Pratesi G, Savi G, Pezzoni G et al. Poly-L-aspartic acid as a carrier for doxorubicin: a comparative in vivo study of free and polymer-bound drug. Br J Cancer 1985; 52: 8418.
  • 24
    Veronese FM, Schiavon O, Pasut G et al. PEG-doxorubicin conjugates: influence of polymer structure on drug release, in vitro cytotoxicity, biodistribution, and antitumor activity. Bioconjug Chem 2005; 16: 77584.
  • 25
    Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev 2009; 61: 76884.
  • 26
    MacKay JA, Chen M, McDaniel JR, Liu W, Simnick AJ, Chilkoti A. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat Mater 2009; 8: 9939.
  • 27
    Etrych T, Jelínková M, Ríhová B, Ulbrich K. New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: synthesis and preliminary in vitro and in vivo biological properties. J Control Release 2001; 73: 89102.
  • 28
    Ulbrich K, Etrych T, Chytil P, Jelínková M, Ríhová B. HPMA copolymers with pH-controlled release of doxorubicin: in vitro cytotoxicity and in vivo antitumor activity. J Control Release 2003; 87: 3347.
  • 29
    Storm G, ten Kate MT, Working PK, Bakker-Woudenberg IA. Doxorubicin entrapped in sterically stabilized liposomes: effects on bacterial blood clearance capacity of the mononuclear phagocyte system. Clin Cancer Res 1998; 3: 1115.
  • 30
    Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 1999; 51: 691743.