Apoptotic protease activating factor-1 (APAF-1) is a key regulator gene of apoptosis, located downstream from p53. Loss of APAF-1 expression is associated with chemorefractory malignant melanoma and neuronal cell differentiation. In order to make clear the function of APAF-1 in the carcinogenesis of germ cell tumors, we evaluated the expression levels of APAF-1 and several apoptosis and differentiation markers by immunohistochemistry in formalin-fixed paraffin-embedded samples from 43 cases of testicular germ cell tumor (TGCT) and six specimens of normal testis tissue. Expression of cleaved caspase-3, Oct-3/4, and Ki-67 were also examined by immunohistochemistry to evaluate apoptotic reactivity, tumor differentiation, and proliferation activity, respectively. APAF-1 was downregulated in two TGCT cell lines by siRNA transfection, and subsequent expression of the Ki-67 and Oct-3/4 genes and differentiation markers of three embryonic germ layers including keratin16 (KRT16) for ectoderm, vimentin (VIM) for mesoderm and GATA4 for endoderm were then tested. No significant relationship was found between APAF-1 expression and apoptotic activity in TGCTs. Expression of APAF-1, Oct-3/4, and Ki-67 was significantly higher in seminomas than in non-seminomas. In TGCTs, higher APAF-1 expression was correlated with higher proliferation (high Ki-67) and a lower degree of differentiation (high Oct-3/4). Interestingly, the expression of APAF-1 gradually decreased in accordance with tumor differentiation (seminoma and embryonal carcinoma > teratoma). Downregulation of APAF-1 in TGCT cell lines resulted in a decrease of Ki-67 and Oct-3/4 and an increase of VIM and KRT16 gene expression. These data show that higher expression of APAF-1 is related to an undifferentiated state in the TGCT pathway. (Cancer Sci 2011; 102: 267–274)