• 1
    Wakabayashi K, Nagao M, Esumi H, Sugimura T. Food-derived mutagens and carcinogens. Cancer Res 1992; 52: 2092s8s.
  • 2
    Layton DW, Bogen KT, Knize MG, Hatch FT, Johnson VM, Felton JS. Cancer risk of heterocyclic amines in cooked foods: an analysis and implications for research. Carcinogenesis 1995; 16: 3952.
  • 3
    Nagao M, Ushijima T, Toyota M, Inoue R, Sugimura T. Genetic changes induced by heterocyclic amines. Mutat Res 1997; 376: 1617.
  • 4
    Kato T, Ohgaki H, Hasegawa H, Sato S, Takayama S, Sugimura T. Carcinogenicity in rats of a mutagenic compound, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline. Carcinogenesis 1988; 9: 713.
  • 5
    Ohgaki H, Hasegawa H, Suenaga M, Sato S, Takayama S, Sugimura T. Carcinogenicity in mice of a mutagenic compound, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) from cooked foods. Carcinogenesis 1987; 8: 6658.
  • 6
    Ito N, Hasegawa R, Sano M et al. A new colon and mammary carcinogen in cooked food, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Carcinogenesis 1991; 12: 15036.
  • 7
    Esumi H, Ohgaki H, Kohzen E, Takayama S, Sugimura T. Induction of lymphoma in CDF1 mice by the food mutagen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Jpn J Cancer Res 1989; 80: 11768.
  • 8
    Ohgaki H, Hasegawa H, Kato T et al. Carcinogenicity in mice and rats of heterocyclic amines in cooked foods. Environ Health Perspect 1986; 67: 12934.
  • 9
    Ohgaki H, Kusama K, Matsukura N et al. Carcinogenicity in mice of a mutagenic compound, 2-amino-3-methylimidazo[4,5-f]quinoline, from broiled sardine, cooked beef and beef extract. Carcinogenesis 1984; 5: 9214.
  • 10
    Adamson RH, Thorgeirsson UP, Snyderwine EG et al. Carcinogenicity of 2-amino-3-methylimidazo[4,5-f]quinoline in nonhuman primates: induction of tumors in three macaques. Jpn J Cancer Res 1990; 81: 104.
  • 11
    WHO, IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Nuturally Occurring Substances: Food Items and Constituents, Heterocylic Aromatic Amines and Mycotoxins. Lyon: World Health Organization, International Agency for Research on Cancer, 1993; 165242.
  • 12
    Sofuni T, Hayashi M, Nohmi T, Matsuoka A, Yamada M, Kamata E. Semi-quantitative evaluation of genotoxic activity of chemical substances and evidence for a biological threshold of genotoxic activity. Mutat Res 2000; 464: 97104.
  • 13
    De Flora S. Detoxification of genotoxic compounds as a threshold mechanism limiting their carcinogenicity. Toxicol Pathol 1984; 12: 33743.
  • 14
    Kirkland DJ, Muller L. Interpretation of the biological relevance of genotoxicity test results: the importance of thresholds. Mutat Res 2000; 464: 13747.
  • 15
    Lutz WK, Kopp-Schneider A. Threshold dose response for tumor induction by genotoxic carcinogens modeled via cell-cycle delay. Toxicol Sci 1999; 49: 1105.
  • 16
    Parry JM. Reflections on the implications of thresholds of mutagenic activity for the labelling of chemicals by the European Union. Mutat Res 2000; 464: 1558.
  • 17
    Hoshi M, Morimura K, Wanibuchi H et al. No-observed effect levels for carcinogenicity and for in vivo mutagenicity of a genotoxic carcinogen. Toxicol Sci 2004; 81: 2739.
  • 18
    Fukushima S, Wanibuchi H, Morimura K et al. Lack of a dose-response relationship for carcinogenicity in the rat liver with low doses of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline or N-nitrosodiethylamine. Jpn J Cancer Res 2002; 93: 107682.
  • 19
    Bolt HM, Degen GH. Human carcinogenic risk evaluation, part II: contributions of the EUROTOX specialty section for carcinogenesis. Toxicol Sci 2004; 81: 36.
  • 20
    Fukushima S, Wanibuchi H, Morimura K et al. Lack of initiation activity in rat liver of low doses of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline. Cancer Lett 2003; 191: 3540.
  • 21
    Kushida M, Wanibuchi H, Morimura K et al. Dose-dependence of promotion of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline-induced rat hepatocarcino-genesis by ethanol: evidence for a threshold. Cancer Sci 2005; 96: 74757.
  • 22
    Wei M, Hori TA, Ichihara T et al. Existence of no-observed effect levels for 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline on hepatic preneoplastic lesion development in BN rats. Cancer Lett 2006; 231: 3048.
  • 23
    Doi K, Wanibuchi H, Salim EI et al. Lack of large intestinal carcinogenicity of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine at low doses in rats initiated with azoxymethane. Int J Cancer 2005; 115: 8708.
  • 24
    Fukushima S, Wanibuchi H, Morimura K et al. Existence of a threshold for induction of aberrant crypt foci in the rat colon with low doses of 2-amino-1-methyl-6-phenolimidazo[4,5-b]pyridine. Toxicol Sci 2004; 80: 10914.
  • 25
    Ito N, Tsuda H, Tatematsu M et al. Enhancing effect of various hepatocarcinogens on induction of preneoplastic glutathione S-transferase placental form positive foci in rats – an approach for a new medium-term bioassay system. Carcinogenesis 1988; 9: 38794.
  • 26
    Tsuda H, Fukushima S, Wanibuchi H et al. Value of GST-P positive preneoplastic hepatic foci in dose-response studies of hepatocarcino-genesis: evidence for practical thresholds with both genotoxic and nongenotoxic carcinogens. A review of recent work. Toxicol Pathol 2003; 31: 806.
  • 27
    Bird RP. Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings. Cancer Lett 1987; 37: 14751.
  • 28
    Tudek B, Bird RP, Bruce WR. Foci of aberrant crypts in the colons of mice and rats exposed to carcinogens associated with foods. Cancer Res 1989; 49: 123640.
  • 29
    Ochiai M, Nakagama H, Turesky RJ, Sugimura T, Nagao M. A new modification of the 32P-post-labeling method to recover IQ-DNA adducts as mononucleotides. Mutagenesis 1999; 14: 23942.
  • 30
    Totsuka Y, Fukutome K, Takahashi M et al. Presence of N2-(deoxyguanosin-8-yl)-2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (dG-C8-MeIQx) in human tissues. Carcinogenesis 1996; 17: 102934.
  • 31
    Wei M, Hamoud AS, Yamaguchi T et al. Potassium bromate enhances N-ethyl-N-hydroxyethylnitrosamine-induced kidney carcinogenesis only at high doses in Wistar rats: indication of the existence of an enhancement threshold. Toxicol Pathol 2009; 37: 98391.
  • 32
    Pretlow TP, O’Riordan MA, Somich GA, Amini SB, Pretlow TG. Aberrant crypts correlate with tumor incidence in F344 rats treated with azoxymethane and phytate. Carcinogenesis 1992; 13: 150912.
  • 33
    Kirsch-Volders M, Vanhauwaert A, Eichenlaub-Ritter U, Decordier I. Indirect mechanisms of genotoxicity. Toxicol Lett 2003; 140–141: 6374.
  • 34
    Norbury CJ, Hickson ID. Cellular responses to DNA damage. Annu Rev Pharmacol Toxicol 2001; 41: 367401.
  • 35
    Bennett RA, Wilson DM III, Wong D, Demple B. Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway. Proc Natl Acad Sci U S A 1997; 94: 71669.
  • 36
    Kolodner RD. Guarding against mutation. Nature 2000; 407: 6879.
  • 37
    Moller P, Wallin H, Vogel U et al. Mutagenicity of 2-amino-3-methylimidazo[4,5-f]quinoline in colon and liver of Big Blue rats: role of DNA adducts, strand breaks, DNA repair and oxidative stress. Carcinogenesis 2002; 23: 137985.
  • 38
    Yang Q, Manicone A, Coursen JD et al. Identification of a functional domain in a GADD45-mediated G2/M checkpoint. J Biol Chem 2000; 275: 368928.
  • 39
    O’Reilly MA, Staversky RJ, Watkins RH, Maniscalco WM, Keng PC. p53-independent induction of GADD45 and GADD153 in mouse lungs exposed to hyperoxia. Am J Physiol Lung Cell Mol Physiol 2000; 278: L5529.
  • 40
    Shaulian E, Karin M. Stress-induced JNK activation is independent of Gadd45 induction. J Biol Chem 1999; 274: 295958.
  • 41
    Morimura K, Salim EI, Yamamoto S, Wanibuchi H, Fukushima S. Dose-dependent induction of aberrant crypt foci in the colons but no neoplastic lesions in the livers of heterozygous p53-deficient mice treated with low dose 2-amino-3-methylimidazo [4,5-f]quinoline. Cancer Lett 1999; 138: 815.
  • 42
    Schut HA, Snyderwine EG. DNA adducts of heterocyclic amine food mutagens: implications for mutagenesis and carcinogenesis. Carcinogenesis 1999; 20: 35368.
  • 43
    Schut HA, Herzog CR, Cummings DA. Accumulation of DNA adducts of 2-amino-3-methylimidazo[4,5-f] quinoline (IQ) in tissues and white blood cells of the Fischer-344 rat after multiple oral dosing. Carcinogenesis 1994; 15: 146770.
  • 44
    Snyderwine EG, Yamashita K, Adamson RH et al. Use of the 32P-postlabeling method to detect DNA adducts of 2-amino-3-methylimidazolo[4,5-f]quinoline (IQ) in monkeys fed IQ: identification of the N-(deoxyguanosin-8-yl)-IQ adduct. Carcinogenesis 1988; 9: 173943.
  • 45
    Yamashita K, Adachi M, Kato S et al. DNA adducts formed by 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline in rat liver: dose-response on chronic administration. Jpn J Cancer Res 1990; 81: 4706.
  • 46
    Shimada T, Hayes CL, Yamazaki H et al. Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. Cancer Res 1996; 56: 297984.
  • 47
    McPherson RA, Tingle MD, Ferguson LR. Contrasting effects of acute and chronic dietary exposure to 2-amino-3-methyl-imidazo[4,5-f]quinoline (IQ) on xenobiotic metabolising enzymes in the male Fischer 344 rat: implications for chemoprevention studies. Eur J Nutr 2001; 40: 3947.
  • 48
    Kato T, Hasegawa R, Nakae D et al. Dose-dependent induction of 8-hydroxyguanine and preneoplastic foci in rat liver by a food-derived carcinogen, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, at low dose levels. Jpn J Cancer Res 1996; 87: 12733.