SEARCH

SEARCH BY CITATION

References

  • 1
    Gill PS, Hamilton A, Naidu Y. Epidemic (AIDS-related) Kaposi’s sarcoma: epidemiology, pathogenesis, and treatment. AIDS 1994; 7: 1.
  • 2
    Ensoli B, Sturzl M. Kaposi’s Sarcoma: a result of the interplay among inflammatory cytokines, angiogenic factors and viral agents. Cytokine Growth Factor Rev 1998; 9: 6383.
  • 3
    Reitz MS, Nerurkar LS, Gallo RC. Perspective on Kaposi’s Sarcoma: facts, concepts, and conjectures. J Natl Cancer Inst 1999; 91: 14538.
  • 4
    Viejo-Borbolla A, Schulz TF. Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV8): key aspects of epidemiology and pathogenesis. AIDS Rev 2003; 5: 2229.
  • 5
    Aoki Y, Tosato G. Interactions between HIV-1 Tat and KSHV. Curr Top Microbiol Immunol 2007; 312: 30926.
  • 6
    Sodhi S, Montaner V, Patel M et al. The Kaposi’s Sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha. Cancer Res 2000; 60: 487380.
  • 7
    Gasperini P, Sakakibara S, Tosato G. Contribution of viral and cellular cytokines to Kaposi’s sarcoma-associated herpesvirus pathogenesis. J Leukoc Biol 2008; 84: 9941000.
  • 8
    Polverini PJ, Nickoloff BJ. Role of scatter factor and the c-met protooncogene in the pathogenesis of AIDS-associated Kaposi’s Sarcoma. Adv Cancer Res 1995; 66: 23553.
  • 9
    Maier JA, Mariotti M, Albini A et al. Over-expression of hepatocyte growth factor in human Kaposi’s Sarcoma. Int J Cancer 1996; 65: 16872.
  • 10
    Montaldo F, Maffe A, Morini M et al. Expression of functional tyrosine kinases on immortalized Kaposi’s Sarcoma cells. J Cell Physiol 2000; 184: 24654.
  • 11
    Naidu YM, Rosen EM, Zitnick R et al. Role of scatter factor in the pathogenesis of AIDS-related Kaposi Sarcoma. Proc Natl Acad Sci USA 1994; 91: 52815.
  • 12
    Bussolino F, Di Renzo MF, Ziche M et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 1992; 119: 62941.
  • 13
    Birchmeier A, Birchmeier W, Gherardi E, Vande Woude GF. Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Nat Rev Mol Cell Biol 2003; 4: 91525.
  • 14
    Bardelli C, Sala M, Cavallazzi U, Prat M. Agonist Met antibodies define the signalling threshold required for a full mitogenic and invasive program of Kaposi’s Sarcoma cells. Biochem Biophys Res Commun 2005; 334: 11729.
  • 15
    Sullivan R, Dezube BJ, Koon HB. Signal transduction targets in Kaposi’s sarcoma. Curr Opin Oncol 2006; 18: 45662.
  • 16
    Lambert PJ, Shahrier AZ, Whitman AG et al. Targeting the PI3K and MAPK pathways to treat Kaposi’s-sarcoma-associated herpes virus infection and pathogenesis. Expert Opin Ther Targets 2007; 11: 58999.
  • 17
    Carrasco S, Mérida I. Diacylglycerol, when simplicity becomes complex. Trends Biochem Sci 2007; 32: 2736.
  • 18
    Sakane F, Imai S, Kai M, Yasuda S, Kanoh H. Diacylglycerol kinases: why so many of them?. Biochim Biophys Acta 2007; 1771: 793806.
  • 19
    Topham MK, Prescott SM. Mammalian diacylglycerol kinases, a family of lipid kinases with signaling functions. J Biol Chem 1999; 274: 1144750.
  • 20
    Cutrupi S, Baldanzi G, Gramaglia D et al. Src-mediated activation of alpha-diacylglycerol kinase is required for hepatocyte growth factor-induced cell motility. EMBO J 2000; 19: 461422.
  • 21
    Baldanzi G, Mitola S, Cutrupi S et al. Activation of diacylglycerol kinase alpha is required for VEGF-induced angiogenic signaling in vitro. Oncogene 2004; 23: 482838.
  • 22
    Davidson L, Pawson AJ, López de Maturana R et al. Gonadotropin-releasing hormone-induced activation of diacylglycerol kinase-zeta and its association with active c-src. J Biol Chem 2004; 279: 1190616.
  • 23
    Tabellini G, Billi AM, Falà F et al. Nuclear diacylglycerol kinase-theta is activated in response to nerve growth factor stimulation of PC12 cells. Cell Signal 2004; 16: 126371.
  • 24
    Nelson CD, Perry SJ, Regier DS, Prescott SM, Topham MK, Lefkowitz RJ. Targeting of diacylglycerol degradation to M1 muscarinic receptors by beta-arrestins. Science 2007; 315: 6636.
  • 25
    Chianale F, Cutrupi S, Rainero E et al. Diacylglycerol kinase-alpha mediates hepatocyte growth factor-induced epithelial cell scatter by regulating Rac activation and membrane ruffling. Mol Biol Cell 2007; 18: 485971.
  • 26
    Bacchiocchi R, Baldanzi G, Carbonari D et al. Activation of alpha-diacylglycerol kinase is critical for the mitogenic properties of anaplastic lymphoma kinase. Blood 2005; 106: 217582.
  • 27
    Regier DS, Higbee J, Lund KM, Sakane F, Prescott SM, Topham MK. Diacylglycerol kinase iota regulates Ras guanyl-releasing protein 3 and inhibits Rap1 signaling. Proc Natl Acad Sci USA 2005; 102: 7595600.
  • 28
    Jiang Y, Sakane F, Kanoh H, Walsh JP. Selectivity of the diacylglycerol kinase inhibitor 3-[2-(4-[bis-(4-fluorophenyl)methylene]-1-piperidinyl)ethyl]-2, 3-dihydro-2-thioxo-4(1H) quinazolinone (R59949) among diacylglycerol kinase subtypes. Biochem Pharmacol 2000; 59: 76372.
  • 29
    Prat M, Crepaldi T, Gandino L, Giordano S, Longati P, Comoglio P. C-terminal truncated forms of Met, the hepatocyte growth factor receptor. Mol Cell Biol 1991; 11: 595462.
  • 30
    Prat M, Crepaldi T, Pennacchietti S, Bussolino F, Comoglio PM. Agonistic monoclonal antibodies against the Met receptor dissect the biological responses to HGF. J Cell Sci 1998; 111: 23747.
  • 31
    Siegal B, Levinton-Kriss S, Schiffer A et al. Kaposi’s sarcoma in immunosuppression. Possibly the result of a dual viral infection. Cancer 1990; 65: 4928.
  • 32
    de Chaffoy de Courcelles D, Roevens P, Van Belle H, Kennis L, Somers Y, De Clerck F. The role of endogenously formed diacylglycerol in the propagation and termination of platelet activation. A biochemical and functional analysis using the novel diacylglycerol kinase inhibitor, R 59 949. J Biol Chem 1989; 264: 327485.
  • 33
    Benelli R, Albini A. In vitro models of angiogenesis: the use of Matrigel. Int J Biol Markers 1999; 14: 2436.
  • 34
    Herndier BG, Werner A, Arnstein P et al. Characterization of a human Kaposi’s sarcoma cell line that induces angiogenic tumors in animals. AIDS 1994; 8: 57581.
  • 35
    Prakash O, Tang ZY, He YE et al. Human Kaposi’s sarcoma cell-mediated tumorigenesis in human immunodeficiency type 1 tat-expressing transgenic mice. J Natl Cancer Inst 2000; 92: 7218.
  • 36
    Sharma GD, He J, Bazan HE. p38 and ERK1/2 coordinate cellular migration and proliferation in epithelial wound healing: evidence of cross-talk activation between MAP kinase cascades. J Biol Chem 2003; 278: 2198997.
  • 37
    Scarpino S, Stoppacciaro A, Ballerini F et al. Papillary carcinoma of the thyroid: hepatocyte growth factor (HGF) stimulates tumor cells to release chemokines active in recruiting dendritic cells. Am J Pathol 2000; 156: 8317.
  • 38
    Zhang YW, Su Y, Volpert OV, Vande Woude GF. Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc Natl Acad Sci USA 2003; 100: 1271823.
  • 39
    Miele C, Paturzo F, Teperino R et al. Glucose regulates diacylglycerol intracellular levels and protein kinase C activity by modulating diacylglycerol kinase subcellular localization. J Biol Chem 2007; 282: 3183543.
  • 40
    Tang W, Bunting M, Zimmerman GA, McIntyre TM, Prescott SM. Molecular cloning of a novel human diacylglycerol kinase highly selective for arachidonate-containing substrates. J Biol Chem 1996; 271: 1023741.
  • 41
    Baldanzi G, Alchera E, Imarisio C et al. Negative regulation of diacylglycerol kinase theta mediates adenosine-dependent hepatocyte preconditioning. Cell Death Differ 2010; 17: 105968.
  • 42
    Bunting M, Tang W, Zimmerman GA, McIntyre TM, Prescott SM. Molecular cloning and characterization of a novel human diacylglycerol kinase zeta. J Biol Chem 1996; 271: 102306.
  • 43
    Filigheddu N, Cutrupi S, Porporato PE et al. Diacylglycerol kinase is required for HGF-induced invasiveness and anchorage-independent growth of MDA-MB-231 breast cancer cells. Anticancer Res 2007; 27: 148992.
  • 44
    Abramovici H, Gee SH. Morphological changes and spatial regulation of diacylglycerol kinase-zeta, syntrophins, and Rac1 during myoblast fusion. Cell Motil Cytoskeleton 2007; 64: 54967.
  • 45
    Raben DM, Tu-Sekine B. Nuclear diacylglycerol kinases: regulation and roles. Front Biosci 2008; 13: 5907.
  • 46
    Kai M, Yasuda S, Imai S, Toyota M, Kanoh H, Sakane F. Diacylglycerol kinase alpha enhances protein kinase Czeta-dependent phosphorylation at Ser311 of p65/RelA subunit of nuclear factor-kappaB. FEBS Lett 2009; 583: 32658.
  • 47
    Li D, Urs NA, Allegood J, Leon A, Merrill AH, Sewer MB. Cyclic AMP-stimulated interaction between steroidogenic factor 1 and diacylglycerol kinase facilitates induction of CYP17. Mol Cell Biol 2007; 19: 666985.
  • 48
    Crotty T, Cai J, Sakane F, Taketomi A, Prescott SM, Topham MK. Diacylglycerol kinase delta regulates protein kinase C and epidermal growth factor receptor signaling. Proc Natl Acad Sci USA 2006; 103: 1548590.
  • 49
    Flores I, Casaseca T, Martinez-A C, Kanoh H, Merida I. Phosphatidic acid generation through interleukin 2 (IL-2)-induced alpha-diacylglycerol kinase activation is an essential step in IL-2-mediated lymphocyte proliferation. J Biol Chem 1996; 271: 1033440.