• 1
    Gluz O, Liedtke C, Gottschalk N, Pusztai L, Nitz U, Harbeck N. Triple-negative breast cancer – current status and future directions. Ann Oncol 2010; 21: 712.
  • 2
    Yamashiro H, Toi M. Update of evidence in chemotherapy for breast cancer. Int J Clin Oncol 2008; 13: 37.
  • 3
    Shatz M, Liscovitch M. Caveolin-1: a tumor-promoting role in human cancer. Int J Radiat Biol 2008; 84: 17789.
  • 4
    Cantiani L, Manara MC, Zucchini C et al. Caveolin-1 reduces osteosarcoma metastases by inhibiting c-Src activity and met signaling. Cancer Res 2007; 67: 767585.
  • 5
    Wikman H, Kettunen E, Seppänen JK et al. Identification of differentially expressed genes in pulmonary adenocarcinoma by using cDNA array. Oncogene 2002; 21: 580413.
  • 6
    Kato K, Hida Y, Miyamoto M et al. Overexpression of caveolin-1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Cancer 2002; 94: 92933.
  • 7
    Suzuoki M, Miyamoto M, Kato K et al. Impact of caveolin-1 expression on prognosis of pancreatic ductal adenocarcinoma. Br J Cancer 2002; 87: 11404.
  • 8
    Cohen AW, Hnasko R, Schubert W, Lisanti MP. Role of caveolae and caveolins in health and disease. Physiol Rev 2004; 84: 134179.
  • 9
    Zhang W, Razani B, Altschuler Y et al. Caveolin-1 inhibits epidermal growth factor-stimulated lamellipod extension and cell migration in metastatic mammary adenocarcinoma cells (MTLn3). Transformation suppressor effects of adenovirus-mediated gene delivery of caveolin-1. J Biol Chem 2000; 275: 2071725.
  • 10
    Park WY, Park JS, Cho KA et al. Up-regulation of caveolin attenuates epidermal growth factor signaling in senescent cells. J Biol Chem 2000; 275: 2084752.
  • 11
    Sotgia F, Schubert W, Pestell RG, Lisanti MP. Genetic ablation of caveolin-1 in mammary epithelial cells increases milk production and hyper-activates STAT5a signaling. Cancer Biol Ther 2006; 5: 2927.
  • 12
    Woodman SE, Ashton AW, Schubert W et al. Caveolin-1 knockout mice show an impaired angiogenic response to exogenous stimuli. Am J Pathol 2003; 162: 205968.
  • 13
    Volonte D, Zhang K, Lisanti MP, Galbiati F. Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts. Mol Biol Cell 2002; 13: 250217.
  • 14
    Chretien A, Piront N, Delaive E, Demazy C, Ninane N, Toussaint O. Increased abundance of cytoplasmic and nuclear caveolin 1 in human diploid fibroblasts in H(2)O(2)-induced premature senescence and interplay with p38alpha(MAPK). FEBS Lett 2008; 582: 168592.
  • 15
    Ostman A, Augsten M. Cancer-associated fibroblasts and tumor growth – bystanders turning into key players. Curr Opin Genet Dev 2009; 19: 6773.
  • 16
    Qian N, Ueno T. Is dysfunction of caveolin-1 a link between systemic sclerosis and breast cancer, opening a window on both etiologies? Arch Med Res 2010; 41: 297301.
  • 17
    Williams TM, Sotgia F, Lee H et al. Stromal and epithelial caveolin-1 both confer a protective effect against mammary hyperplasia and tumorigenesis: caveolin-1 antagonizes cyclin D1 function in mammary epithelial cells. Am J Pathol 2006; 169: 1784801.
  • 18
    Witkiewicz AK, Dasgupta A, Sotgia F et al. An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol 2009; 174: 202334.
  • 19
    Witkiewicz AK, Dasgupta A, Nguyen KH et al. Stromal caveolin-1 levels predict early DCIS progression to invasive breast cancer. Cancer Biol Ther 2009; 8: 10719.
  • 20
    Sakamoto G, Inaji H, Akiyama F et al ; Japanese Breast Cancer Society. General rules for clinical and pathological recording of breast cancer 2005. Breast Cancer 2005; 12(Suppl): S127.
  • 21
    Liu P, Rudick M, Anderson RG. Multiple functions of caveolin-1. J Biol Chem 2002; 277: 412958.
  • 22
    Perrone G, Altomare V, Zagami M et al. Caveolin-1 expression in human breast lobular cancer progression. Mod Pathol 2009; 22: 718.
  • 23
    Sloan EK, Ciocca DR, Pouliot N et al. Stromal cell expression of caveolin-1 predicts outcome in breast cancer. Am J Pathol 2009; 174: 203543.
  • 24
    Liedtke C, Kersting C, Bürger H, Kiesel L, Wülfing P. Caveolin-1 expression in benign and malignant lesions of the breast. World J Surg Oncol 2007; 5: 110.
  • 25
    Rønnov-Jessen L, Bissell MJ. Breast cancer by proxy: can the microenvironment be both the cause and consequence? Trends Mol Med 2009; 15: 513.
  • 26
    Mercier I, Casimiro MC, Wang C et al. Human breast cancer-associated fibroblasts (CAFs) show caveolin-1 downregulation and RB tumor suppressor functional inactivation: implications for the response to hormonal therapy. Cancer Biol Ther 2008; 7: 121225.
  • 27
    Savage K, Lambros MB, Robertson D et al. Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: a morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin Cancer Res 2007; 13: 90101.
  • 28
    Sagara Y, Mimori K, Yoshinaga K et al. Clinical significance of Caveolin-1, Caveolin-2 and HER2/neu mRNA expression in human breast cancer. Br J Cancer 2004; 91: 95965.
  • 29
    Park SS, Kim JE, Kim YA et al. Caveolin-1 is down-regulated and inversely correlated with HER2 and EGFR expression status in invasive ductal carcinoma of the breast. Histopathology 2005; 47: 62530.
  • 30
    Couet J, Sargiacomo M, Lisanti MP. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem 1997; 272: 3042938.
  • 31
    Kim YN, Wiepz GJ, Guadarrama AG, Bertics PJ. Epidermal growth factor-stimulated tyrosine phosphorylation of caveolin-1. Enhanced caveolin-1 tyrosine phosphorylation following aberrant epidermal growth factor receptor status. J Biol Chem 2000; 275: 748191.
  • 32
    Decensi A, Guerrieri-Gonzaga A, Gandini S et al. Prognostic significance of Ki-67 labeling index after short-term presurgical tamoxifen in women with ER-positive breast cancer. Ann Oncol 2011; 22: 5827.
  • 33
    Sotgia F, Rui H, Bonuccelli G, Mercier I, Pestell RG, Lisanti MP. Caveolin-1, mammary stem cells, and estrogen-dependent breast cancers. Cancer Res 2006; 66: 1064751.
  • 34
    Fiucci G, Ravid D, Reich R, Liscovitch M. Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene 2002; 21: 236575.
  • 35
    Ravid D, Maor S, Werner H, Liscovitch M. Caveolin-1 inhibits anoikis and promotes survival signaling in cancer cells. Adv Enzyme Regul 2006; 46: 16375.
  • 36
    Lavie Y, Fiucci G, Liscovitch M. Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells. J Biol Chem 1998; 273: 323803.
  • 37
    Lavie Y, Liscovitch M. Changes in lipid and protein constituents of rafts and caveolae in multidrug resistant cancer cells and their functional consequences. Glycoconj J 2000; 17: 2539.
  • 38
    Quest AF, Gutierrez-Pajares JL, Torres VA. Caveolin-1: an ambiguous partner in cell signaling and cancer. J Cell Mol Med 2008; 12: 113050.
  • 39
    Sotgia F, Williams TM, Schubert W et al. Caveolin-1 deficiency (−/−) conveys premalignant alterations in mammary epithelia, with abnormal lumen formation, growth factor independence, and cell invasiveness. Am J Pathol 2006; 168: 292309.
  • 40
    Yang G, Timme TL, Naruishi K et al. Mice with cav-1 gene disruption have benign stromal lesions and compromised epithelial differentiation. Exp Mol Pathol 2008; 84: 13140.
  • 41
    Pavlides S, Tsirigos A, Vera I et al. Transcriptional evidence for the “Reverse Warburg Effect” in human breast cancer tumor stroma and metastasis: similarities with oxidative stress, inflammation, Alzheimer’s disease, and “Neuron-Glia Metabolic Coupling”. Aging (Albany NY) 2010; 2: 18599.
  • 42
    Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D et al. Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle 2010; 9: 242333.
  • 43
    Pavlides S, Tsirigos A, Vera I et al. Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the “reverse Warburg effect”: a transcriptional informatics analysis with validation. Cell Cycle 2010; 9: 220119.
  • 44
    Martinez-Outschoorn UE, Trimmer C, Lin Z et al. Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment. Cell Cycle 2010; 9: 351533.
  • 45
    Bonuccelli G, Whitaker-Menezes D, Castello-Cros R et al. The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle 2010; 9: 196071.