SEARCH

SEARCH BY CITATION

References

  • 1
    Mathijssen RH, van Alphen RJ, Verweij J et al. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 2001; 7: 218294.
  • 2
    Ma MK, McLeod HL. Lessons learned from the irinotecan metabolic pathway. Curr Med Chem 2003; 10: 419.
  • 3
    Mathijssen RH, Marsh S, Karlsson MO et al. Irinotecan pathway genotype analysis to predict pharmacokinetics. Clin Cancer Res 2003; 9: 324653.
  • 4
    Innocenti F, Undevia SD, Iyer L et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 2004; 22: 13828.
  • 5
    Marcuello E, Altés A, Menoyo A, Del Rio E, Gómez-Pardo M, Baiget M. UGT1A1 gene variations and irinotecan treatment in patients with metastatic colorectal cancer. Br J Cancer 2004; 91: 67882.
  • 6
    Rouits E, Boisdron-Celle M, Dumont A, Guérin O, Morel A, Gamelin E. Relevance of different UGT1A1 polymorphisms in irinotecan-induced toxicity: a molecular and clinical study of 75 patients. Clin Cancer Res 2004; 10: 51519.
  • 7
    Iyer L, King CD, Whitington PF et al. Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest 1998; 101: 84754.
  • 8
    United States Food and Drug Administration. Camptosar® label. [Cited 14 May 2010.] Available from URL: http://www.pfizer.com/pfizer/download/uspi_camptosar.pdf.
  • 9
    Hoskins MJ, Goldberg RM, Qu P, Ibrahim JG, McLeod HL. UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J Natl Cancer Inst 2007; 99: 12905.
  • 10
    Han JY, Lim HS, Shin ES et al. Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J Clin Oncol 2006; 24: 223744.
  • 11
    Ando Y, Saka H, Ando M et al. Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res 2000; 60: 69216.
  • 12
    Yamamoto N, Takahashi T, Kunikane H et al. Phase I/II pharmacokinetic and pharmacogenomic study of UGT1A1 polymorphism in elderly patients with advanced non-small cell lung cancer treated with irinotecan. Clin Pharmacol Ther 2009; 85: 14954.
  • 13
    Sai K, Saeki M, Saito Y et al. UGT1A1 haplotypes associated with reduced glucuronidation and increased serum bilirubin in irinotecan-administered Japanese patients with cancer. Clin Pharmacol Ther 2004; 75: 50115.
  • 14
    Ishizuka N. Continual reassessment method (CRM). Gan To Kagaku Ryoho 2000; 27: 144957. [In Japanese]
  • 15
    Ishizuka N, Ohashi Y. The continual reassessment method and its applications: a Bayesian methodology for phase I cancer clinical trials. Stat Med 2001; 20: 266181.
  • 16
    Sai K, Sawada J, Minami H. Irinotecan pharmacogenetics in Japanese cancer patients: roles of UGT1A1*6 and *28. Yakugaku Zasshi 2008; 128: 57584. [In Japanese].
  • 17
    Kurita A, Kaneda N. High-performance liquid chromatographic method for the simultaneous determination of the camptothecin derivative irinotecan hydrochloride, CPT-11, and its metabolites SN-38 and SN-38 glucuronide in rat plasma with a fully automated on-line solid-phase extraction system, PROSPEKT. J Chromatogr B Biomed Sci Appl 1999; 724: 33544.
  • 18
    Ishizuka N, Morita S. Practical implementation of continual reassessment method. In: Crowley J, Ankerst DP, eds. Handbook of Statistics in Clinical Oncology, 2nd edn. Boca Raton: Chapman and Hall/CRC, 2006; 97113.
  • 19
    Negoro S, Fukuoka M, Masuda N et al. Phase I study of weekly intravenous infusions of CPT-11, a new derivative of camptothecin, in the treatment of advanced non-small-cell lung cancer. J Natl Cancer Inst 1991; 83: 11648.
  • 20
    Hoskins JM, Marcuello E, Altes A et al. Irinotecan pharmacogenetics: influence of pharmacodynamic genes. Clin Cancer Res 2008; 14: 178896.
  • 21
    Zhe-Yi H, Qi Y, Qi P et al. Dose-dependent association between UGT1A1*28 genotype and irinotecan-induced neutropenia: low doses also increase risk. Clin Cancer Res 2010; 16: 383242.
  • 22
    Beutler E, Gelbart T, Demina A. Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc Natl Acad Sci USA 1998; 95: 81704.
  • 23
    Minami H, Sai K, Saeki M et al. Irinotecan pharmacokinetics/pharmacodynamics and UGT1A genetic polymorphisms in Japanese: roles of UGT1A1*6 and *28. Pharmacogenet Genomics 2007; 17: 497504.
  • 24
    Toffoli G, Cecchin E, Corona G et al. The role of the UGT1A1*28 polymorphism in the pharmacodynamics and pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. J Clin Oncol 2006; 24: 30618.
  • 25
    Kweekel DM, Gelderblom H, Van der Straaten T et al. UGT1A1*28 genotype and irinotecan dosage in patients with metastatic colorectal cancer: a Dutch Colorectal Cancer Group study. Br J Cancer 2008; 99: 27582.
  • 26
    Toffoli G, Cecchin E, Gasparini G et al. Genotype-driven phase I study of irinotecan administered in combination with fluorouracil/leucovorin in patients with metastatic colorectal cancer. J Clin Oncol 2010; 28: 86671.
  • 27
    Cunningham D, Humblet Y, Siena S et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004; 351: 33745.