SEARCH

SEARCH BY CITATION

References

  • 1
    Ghosh S, May MJ, Kopp EB. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 1998; 16: 22560.
  • 2
    Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S. Rel/NF-κB/IκB family: intimate tales of association and dissociation. Genes Dev 1995; 9: 272335.
  • 3
    Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124: 783801.
  • 4
    Karin M, Lawrence T, Nizet V. Innate immunity gone awry: linking microbial infections to chronic inflammatory disorders and cancer. Cell 2006; 124: 82335.
  • 5
    Rayet B, Gélinas C. Aberrant rel/nfκb genes and activity in human cancer. Oncogene 1999; 18: 693869.
  • 6
    Karin M. Nuclear factor-κB in cancer development and progression. Nature 2006; 441: 4316.
  • 7
    Braun T, Carvalho G, Fabre C, Grosjean J, Fenaux P, Kroemer G. Targeting NF-κB in hematologic malignancies. Cell Death Differ 2006; 13: 74858.
  • 8
    Arima N, Molitor JA, Smith MR, Kim JH, Daitoku Y, Greene WC. Human T-cell leukemia virus type I Tax induces expression of the Rel-related family of κB enhancer-binding proteins: evidence for a pretranslational component of regulation. J Virol 1991; 65: 68929.
  • 9
    Kordes U, Krappmann D, Heissmeyer V, Ludwig WD, Scheidereit C. Transcription factor NF-κB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia 2000; 14: 399402.
  • 10
    Davis RE, Brown KD, Siebenlist U, Staudt LM. Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 2001; 194: 186174.
  • 11
    Cuní S, Pérez-Aciego P, Pérez-Chacón G et al. A sustained activation of PIK3/NF-κB pathway is critical for the survival of chronic lymphocytic leukemia B cells. Leukemia 2004; 18: 1391400.
  • 12
    Bargou RC, Emmerich F, Krappmann D et al. Constitutive nuclear factor-κB–RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest 1997; 100: 29619.
  • 13
    Hermans A, Heisterkamp N, von Linden M et al. Unique fusion of bcr and c-abl genes in Philadelphia chromosome positive acute lymphoblastic leukemia. Cell 1987; 51: 3340.
  • 14
    Fainstein E, Marcelle C, Rosner A et al. A new fused transcript in Philadelphia chromosome positive acute lymphocytic leukaemia. Nature 1987; 330: 3868.
  • 15
    Westbrook CA, Hooberman AL, Spino C et al. Clinical significance of the BCR-ABL fusion gene in adult acute lymphoblastic leukemia: a Cancer and Leukemia Group B Study (8762). Blood 1992; 80: 298390.
  • 16
    Groupe Français de Cytogénétique Hématologique. Cytogenetic abnormalities in adult acute lymphoblastic leukemia: correlations with hematologic findings and outcome. A collaborative study of the Groupe Français de Cytogénétique Hématologique. Blood 1996; 87: 313542.
  • 17
    Gleissner B, Gökbuget N, Bartram CR et al. Leading prognostic relevance of the BCR-ABL translocation in adult acute B-lineage lymphoblastic leukemia: a prospective study of the German Multicenter Trial Group and confirmed polymerase chain reaction analysis. Blood 2002; 99: 153643.
  • 18
    Druker BJ, Sawyers CL, Kantarjian H et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001; 344: 103842.
  • 19
    Wassmann B, Pfeifer H, Scheuring U et al. Therapy with imatinib mesylate (Glivec) preceding allogeneic stem cell transplantation (SCT) in relapsed or refractory Philadelphia-positive acute lymphoblastic leukemia (Ph+ALL). Leukemia 2002; 16: 235865.
  • 20
    Brave M, Goodman V, Kaminskas E et al. Sprycel for chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia resistant to or intolerant of imatinib mesylate. Clin Cancer Res 2008; 14: 3529.
  • 21
    Keam SJ. Dasatinib: in chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. BioDrugs 2008; 22: 5969.
  • 22
    von Bubnoff N, Schneller F, Peschel C, Duyster J. BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 2002; 359: 48791.
  • 23
    Hofmann WK, Jones LC, Lemp NA et al. Ph+ acute lymphoblastic leukemia resistant to tyrosine kinase inhibitor STI571 has a unique BCR-ABL gene mutation. Blood 2002; 99: 18602.
  • 24
    Liesveld JL, Rosell KE, Lu C et al. Acute myelogenous leukemia–microenvironment interactions: role of endothelial cells and proteasome inhibition. Hematology 2005; 10: 48394.
  • 25
    Garrido SM, Appelbaum FR, Willman CL, Banker DE. Acute myeloid leukemia cells are protected from spontaneous and drug-induced apoptosis by direct contact with a human bone marrow stromal cell line (HS-5). Exp Hematol 2001; 29: 44857.
  • 26
    Mishra S, Zhang B, Cunnick JM, Heisterkamp N, Groffen J. Resistance to imatinib of Bcr/Abl p190 lymphoblastic leukemia cells. Cancer Res 2006; 66: 538793.
  • 27
    Munzert G, Kirchner D, Ottmann O, Bergmann L, Schmid RM. Constitutive NF-κB/Rel activation in Philadelphia chromosome positive (Ph+) acute lymphoblastic leukemia (ALL). Leuk Lymphoma 2004; 45: 11814.
  • 28
    Reuther JY, Reuther GW, Cortez D, Pendergast AM, Baldwin AS Jr. A requirement for NF-κB activation in Bcr-Abl-mediated transformation. Genes Dev 1998; 12: 96881.
  • 29
    Hamdane M, David-Cordnnier MH, D’Halluin JC. Activation of p65NF-κB protein by p210BCR-ABL in a myeloid cell line (p210BCR-ABL activates p65NF-κB). Oncogene 1997; 15: 226775.
  • 30
    Bai Y, Soda Y, Izawa K et al. Effective transduction and stable transgene expression in human blood cells by a third-generation lentiviral vector. Gene Ther 2003; 10: 144657.
  • 31
    Tojo A, Izawa K, Sekine R, Nagamura-Inoue T, Kobauashi S. Development of a unique in vitro and in vivo model system of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph-ALL) with emphasis on cell to cell interaction (Abstract). Blood 2006; 108: 1845a.
  • 32
    Sekine R, Kitamura T, Tsuji T, Tojo A. Efficient retroviral transduction of human B-lymphoid and myeloid progenitors: marked inhibition of their growth by Pax5 transgene. Int J Hematol 2008; 87: 35162.
  • 33
    Yamamoto M, Horie R, Takeiri M, Kozawa I, Umezawa K. Inactivation of nuclear factor kappa B components by covalent binding of DHMEQ to specific cysteine residues. J Med Chem 2008; 51: 57808.
  • 34
    Inoue Y, Tojo A, Sekine R et al. In vitro validation of bioluminescent monitoring of disease progression and therapeutic response in leukaemia model animals. Eur J Nucl Med Mol Imaging 2006; 33: 55765.
  • 35
    Matsumoto G, Namekawa J, Muta M et al. Targeting of nuclear factor κB pathways by dehydroxymethylepoxyquinomicin, a novel inhibitor of breast carcinomas: antitumor and antiangiogenic potential in vivo. Clin Cancer Res 2005; 11: 128793.
  • 36
    Naylor MS, Malik ST, Stamp GW, Jobling T, Balkwill FR. In situ detection of tumour necrosis factor in human ovarian cancer specimens. Eur J Cancer 1990; 26: 102730.
  • 37
    Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer 2009; 9: 36171.
  • 38
    Wang CY, Mayo MW, Baldwin AS Jr. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 1996; 274: 7847.
  • 39
    Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM. Suppression of TNF-α-induced apoptosis by NF-κB. Science 1996; 274: 7879.
  • 40
    Chauhan D, Uchiyama H, Akbarali Y et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-κB. Blood 1996; 87: 110412.
  • 41
    Pikarsky E, Porat RM, Stein I et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 2004; 431: 4616.
  • 42
    Wolf AM, Wolf D, Rumpold H et al. The kinase inhibitor imatinib mesylate inhibits TNF-α production in vitro and prevents TNF-dependent acute hepatic inflammation. Proc Natl Acad Sci USA 2005; 102: 136227.
  • 43
    Komori J, Marusawa H, Machimoto T et al. Activation-induced cytidine deaminase links bile duct inflammation to human cholangiocarcinoma. Hepatology 2008; 47: 88896.
  • 44
    Feldhahn N, Henke N, Melchior K et al. Activation-induced cytidine deaminase acts as a mutator in BCR-ABL1-transformed acute lymphoblastic leukemia cells. J Exp Med 2007; 204: 115766.