SEARCH

SEARCH BY CITATION

References

  • 1
    Cohen JI. Epstein–Barr virus infection. N Engl J Med 2000; 343: 48192.
  • 2
    Quintanilla-Martinez L, Kimura H, Jaffe ES. EBV+ T-cell lymphoma of childhood. In: Jaffe ES, Harris NL, Stein H, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th edn. Lyon: IARC Press, 2008; 27880.
  • 3
    Rickinson AB, Kieff E. Epstein–Barr virus. In: Knipe DM, Howley PM, eds. Fields Virology. Philadelphia: Lippincott Williams & Wilkins, 2007; 2655700.
  • 4
    Williams H, Crawford DH. Epstein–Barr virus: the impact of scientific advances on clinical practice. Blood 2006; 107: 8629.
  • 5
    Kieff ED, Rickinson AV. Epstein–Barr virus and its replication. In: Knipe DM, Howley PM, eds. Fields Virology. Philadelphia: Lippincott Williams & Wilkins, 2007; 260354.
  • 6
    Cartron G, Watier H, Golay J, Solal-Celigny P. From the bench to the bedside: ways to improve rituximab efficacy. Blood 2004; 104: 263542.
  • 7
    Heslop HE. How I treat EBV lymphoproliferation. Blood 2009; 114: 40028.
  • 8
    Detich N, Bovenzi V, Szyf M. Valproate induces replication-independent active DNA demethylation. J Biol Chem 2003; 278: 2758692.
  • 9
    Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006; 5: 76984.
  • 10
    Kawagoe R, Kawagoe H, Sano K. Valproic acid induces apoptosis in human leukemia cells by stimulating both caspase-dependent and -independent apoptotic signaling pathways. Leuk Res 2002; 26: 495502.
  • 11
    Takai N, Desmond JC, Kumagai T et al. Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells. Clin Cancer Res 2004; 10: 11419.
  • 12
    Feng WH, Kenney SC. Valproic acid enhances the efficacy of chemotherapy in EBV-positive tumors by increasing lytic viral gene expression. Cancer Res 2006; 66: 87629.
  • 13
    Hui KF, Chiang AK. Suberoylanilide hydroxamic acid induces viral lytic cycle in Epstein–Barr virus-positive epithelial malignancies and mediates enhanced cell death. Int J Cancer 2010; 126: 247989.
  • 14
    Iwata S, Yano S, Ito Y et al. Bortezomib induces apoptosis in T lymphoma cells and natural killer lymphoma cells independent of Epstein–Barr virus infection. Int J Cancer 2011; 129: 226373.
  • 15
    Zhang Y, Nagata H, Ikeuchi T et al. Common cytological and cytogenetic features of Epstein–Barr virus (EBV)-positive natural killer (NK) cells and cell lines derived from patients with nasal T/NK-cell lymphomas, chronic active EBV infection and hydroa vacciniforme-like eruptions. Br J Haematol 2003; 121: 80514.
  • 16
    Tsuge I, Morishima T, Morita M, Kimura H, Kuzushima K, Matsuoka H. Characterization of Epstein–Barr virus (EBV)-infected natural killer (NK) cell proliferation in patients with severe mosquito allergy; establishment of an IL-2-dependent NK-like cell line. Clin Exp Immunol 1999; 115: 38592.
  • 17
    Kaplan J, Tilton J, Peterson WD Jr. Identification of T cell lymphoma tumor antigens on human T cell lines. Am J Hematol 1976; 1: 21923.
  • 18
    Yagita M, Huang CL, Umehara H et al. A novel natural killer cell line (KHYG-1) from a patient with aggressive natural killer cell leukemia carrying a p53 point mutation. Leukemia 2000; 14: 92230.
  • 19
    Miyoshi I, Kubonishi I, Yoshimoto S et al. Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic T cells. Nature 1981; 294: 7701.
  • 20
    Fujiwara S, Ono Y. Isolation of Epstein–Barr virus-infected clones of the human T-cell line MT-2: use of recombinant viruses with a positive selection marker. J Virol 1995; 69: 39003.
  • 21
    Robertson MJ, Cochran KJ, Cameron C, Le JM, Tantravahi R, Ritz J. Characterization of a cell line, NKL, derived from an aggressive human natural killer cell leukemia. Exp Hematol 1996; 24: 40615.
  • 22
    Isobe Y, Sugimoto K, Matsuura I, Takada K, Oshimi K. Epstein–Barr virus renders the infected natural killer cell line, NKL resistant to doxorubicin-induced apoptosis. Br J Cancer 2008; 99: 181622.
  • 23
    Iwata S, Wada K, Tobita S et al. Quantitative analysis of Epstein–Barr virus (EBV)-related gene expression in patients with chronic active EBV infection. J Gen Virol 2010; 91: 4250.
  • 24
    Kubota N, Wada K, Ito Y et al. One-step multiplex real-time PCR assay to analyse the latency patterns of Epstein–Barr virus infection. J Virol Methods 2008; 147: 2636.
  • 25
    Patel K, Whelan PJ, Prescott S et al. The use of real-time reverse transcription-PCR for prostate-specific antigen mRNA to discriminate between blood samples from healthy volunteers and from patients with metastatic prostate cancer. Clin Cancer Res 2004; 10: 75119.
  • 26
    Kimura H, Miyake K, Yamauchi Y et al. Identification of Epstein–Barr virus (EBV)-infected lymphocyte subtypes by flow cytometric in situ hybridization in EBV-associated lymphoproliferative diseases. J Infect Dis 2009; 200: 107887.
  • 27
    Kimura H, Hoshino Y, Hara S et al. Differences between T cell-type and natural killer cell-type chronic active Epstein–Barr virus infection. J Infect Dis 2005; 191: 5319.
  • 28
    Kimura H, Hoshino Y, Kanegane H et al. Clinical and virologic characteristics of chronic active Epstein–Barr virus infection. Blood 2001; 98: 2806.
  • 29
    Kimura H, Morishima T, Kanegane H et al. Prognostic factors for chronic active Epstein–Barr virus infection. J Infect Dis 2003; 187: 52733.
  • 30
    Cohen JI, Kimura H, Nakamura S, Ko YH, Jaffe ES. Epstein–Barr virus-associated lymphoproliferative disease in non-immunocompromised hosts: a status report and summary of an international meeting, 8–9 September 2008. Ann Oncol 2009; 20: 147282.
  • 31
    Kimura H. Pathogenesis of chronic active Epstein–Barr virus infection: is this an infectious disease, lymphoproliferative disorder, or immunodeficiency? Rev Med Virol 2006; 16: 25161.
  • 32
    Fakih MG, Fetterly G, Egorin MJ et al. A Phase I, pharmacokinetic, and pharmacodynamic study of two schedules of vorinostat in combination with 5-fluorouracil and leucovorin in patients with refractory solid tumors. Clin Cancer Res 2010; 16: 378694.
  • 33
    Kirschbaum M, Frankel P, Popplewell L et al. Phase II Study of vorinostat for treatment of relapsed or refractory indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. J Clin Oncol 2011; 29: 1198203.
  • 34
    Niesvizky R, Ely S, Mark T et al. Phase 2 trial of the histone deacetylase inhibitor romidepsin for the treatment of refractory multiple myeloma. Cancer 2011; 117: 33642.
  • 35
    Jagannath S, Dimopoulos MA, Lonial S. Combined proteasome and histone deacetylase inhibition: a promising synergy for patients with relapsed/refractory multiple myeloma. Leuk Res 2010; 34: 11118.
  • 36
    Kawada J, Zou P, Mazitschek R, Bradner JE, Cohen JI. Tubacin kills Epstein–Barr virus (EBV)–Burkitt lymphoma cells by inducing reactive oxygen species and EBV lymphoblastoid cells by inducing apoptosis. J Biol Chem 2009; 284: 171029.
  • 37
    Kuntz-Simon G, Obert G. Sodium valproate, an anticonvulsant drug, stimulates human cytomegalovirus replication. J Gen Virol 1995; 76: 140915.
  • 38
    Klass CM, Krug LT, Pozharskaya VP, Offermann MK. The targeting of primary effusion lymphoma cells for apoptosis by inducing lytic replication of human herpesvirus 8 while blocking virus production. Blood 2005; 105: 402834.
  • 39
    Bazarbachi A, Suarez F, Fields P, Hermine O. How I treat adult T-cell leukemia/lymphoma. Blood 2011; 118: 173645.
  • 40
    Zain JM, O’Connor O. Targeted treatment and new agents in peripheral T-cell lymphoma. Int J Hematol 2010; 92: 3344.