• 1
    Whiteside TL. Immune responses to malignancies. J Allergy Clin Immunol 2010; 125: S27283.
  • 2
    Talmadge JE. Immune cell infiltration of primary and metastatic lesions: mechanisms and clinical impact. Semin Cancer Biol 2011; 21: 1318.
  • 3
    Poschke I, Mougiakakos D, Kiessling R. Camouflage and sabotage: tumor escape from the immune system. Cancer Immunol Immunother 2011; 60: 116171.
  • 4
    Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9: 16274.
  • 5
    Fujimura T, Mahnke K, Enk AH. Meyloid derived suppressor cells and their role in tolerance induction in cancer. J Dermatol Sci 2010; 59: 16.
  • 6
    Peranzoni E, Zilio S, Marigo I et al. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol 2010; 22: 23844.
  • 7
    Greten TF, Manns MP, Korangy F. Myeloid derived suppressor cells in human diseases. Int Immunopharmacol 2011; 11: 8027.
  • 8
    Zea AH, Rodriguez PC, Atkins MB et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 2005; 65: 30448.
  • 9
    Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 2009; 58: 4959.
  • 10
    Liu CY, Wang YM, Wang CL et al. Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14-/CD15 + /CD33 +  myeloid-derived suppressor cells and CD8 +  T lymphocytes in patients with advanced-stage non-small cell lung cancer. J Cancer Res Clin Oncol 2010; 110: 3645.
  • 11
    Hoechst B, Ormandy LA, Ballmaier M et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4 + CD25 + Foxp3 +  T cells. Gastroenterology 2008; 135: 23443.
  • 12
    Filipazzi P, Valenti R, Huber V et al. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 2007; 25: 254653.
  • 13
    Vuk-Pavlovic S, Bulur PA, Lin Y et al. Immunosuppressive CD14 + HLA-DRlow/- monocytes in prostate cancer. Prostate 2010; 70: 44355.
  • 14
    Tomiyama H, Matsuda T, Takiguchi M. Differentiation of human CD8 +  T cells from a memory to memory/effector phenotype. J Immunol 2002; 168: 553850.
  • 15
    Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MR. Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res 1995; 1: 95103.
  • 16
    Almand B, Resser JR, Lindman B et al. Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 2000; 6: 175566.
  • 17
    Young MR, Wright MA, Lozano Y, Matthew JP, Benefield J, Prechel MM. Mechanisms of immune suppression in patients with head and neck cancer: influence on the immune infiltrate of the cancer. Int J Cancer 1996; 29: 3338.
  • 18
    Huang B, Pan PY, Li Q et al. Gr-1 + CD115 +  immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 2006; 66: 112331.
  • 19
    Serafini P, Mgebroff S, Noonan K, Borrello I. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 2008; 68: 543949.
  • 20
    Ghiringhelli F, Puig PE, Roux S et al. Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4 + CD25 +  regulatory T cell proliferation. J Exp Med 2005; 202: 91929.
  • 21
    Kusmartsev S, Gabrilovich DI. Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 2006; 55: 23745.
  • 22
    Ostrand-Rosenberg S. Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 2010; 59: 1593600.
  • 23
    Collins M, Ling V, Carreno BM. The B7 family of immune-regulatory ligands. Genome Biol 2005; 6: 223.
  • 24
    Hombach AA, Kofler D, Hombach A, Rappl G, Abken H. Effective proliferation of human regulatory T cells requires a strong costimulatory CD28 signal that cannot be substituted by IL-2. J Immunol 2007; 179: 792431.
  • 25
    Rodrigues JC, Gonzalez GC, Zhang L et al. Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro Oncol 2010; 12: 35165.
  • 26
    Vincent J, Mignot G, Chalmin F et al. 5-fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 2010; 70: 305261.
  • 27
    Ko JS, Zea AH, Rini B et al. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 2009; 15: 214857.
  • 28
    Almand B, Clark JI, Nikitina E et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 2001; 166: 67889.
  • 29
    Kusmartsev S, Su Z, Heiser A et al. Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res 2008; 14: 82708.
  • 30
    Nefedove Y, Fishman M, Sherman S, Wang X, Beg AA, Gabrilovich DI. Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res 2003; 63: 44419.