• 1
    Hall BK. Bone and Cartilage: Developmental Skeletal Biology. San Diego, CA, USA: Elsevier Academic Press, 2005; 760.
  • 2
    Eisenstein R, Sorgente N, Soble LW, Miller A, Kuettner KE. The resistance of certain tissues to invasion: Penetrability of explanted tissues by vascularized mesenchyme. Am J Pathol 1973; 73: 76574.
  • 3
    Eisenstein R, Kuettner KE, Neapolitan C, Soble LW, Sorgente N. The resistance of certain tissues to invasion. III. Cartilage extracts inhibit the growth of fibroblasts and endothelial cells in culture. Am J Pathol 1975; 81: 33748.
  • 4
    Sorgente N, Kuettner KE, Soble LW, Eisenstein R. The resistance of certain tissues to invasion. II. Evidence for extractable factors in cartilage which inhibit invasion by vascularized mesenchyme. Lab Invest 1975; 32: 21722.
  • 5
    Moses MA, Sudhalter J, Langer R. Isolation and characterization of an inhibitor of neovascularization from scapular chondrocytes. J Cell Biol 1992; 119: 47582.
  • 6
    Hiraki Y, Inoue H, Iyama K et al. Identification of chondromodulin I as a novel endothelial cell growth inhibitor. Purification and its localization in the avascular zone of epiphyseal cartilage.. J Biol Chem 1997; 272: 3241926.
  • 7
    Shukunami C, Iyama K, Inoue H, Hiraki Y. Spatiotemporal pattern of the mouse chondromodulin-I gene expression and its regulatory role in vascular invasion into cartilage during endochondral bone formation. Int J Dev Biol 1999; 43: 3949.
  • 8
    Funaki H, Sawaguchi S, Yaoeda K et al. Expression and localization of angiogenic inhibitory factor, chondromodulin-I, in adult rat eye. Invest Ophthalmol Vis Sci 2001; 42: 1193200.
  • 9
    Fukushima A, Funaki H, Yaoeda K et al. Localization and expression of chondromodulin-I in the rat cornea. Arch Histol Cytol 2003; 66: 44552.
  • 10
    Yoshioka M, Yuasa S, Matsumura K et al. Chondromodulin-I maintains cardiac valvular function by preventing angiogenesis. Nat Med 2006; 12: 11519.
  • 11
    Kondo J, Shibata H, Miura S et al. A functional role of the glycosylated N-terminal domain of chondromodulin-I. J Bone Miner Metab 2011; 29: 2330.
  • 12
    Miura S, Mitsui K, Heishi T et al. Impairment of VEGF-A-stimulated lamellipodial extensions and motility of vascular endothelial cells by chondromodulin-I, a cartilage-derived angiogenesis inhibitor. Exp Cell Res 2010; 316: 77588.
  • 13
    Hiraki Y, Tanaka H, Inoue H, Kondo J, Kamizono A, Suzuki F. Molecular cloning of a new class of cartilage-specific matrix, chondromodulin-I, which stimulates growth of cultured chondrocytes. Biochem Biophys Res Commun 1991; 175: 9717.
  • 14
    Niwa H, Yamamura K, Miyazaki J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 1991; 108: 1939.
  • 15
    Hayami T, Shukunami C, Mitsui K et al. Specific loss of chondromodulin-I gene expression in chondrosarcoma and the suppression of tumor angiogenesis and growth by its recombinant protein in vivo. FEBS Lett 1999; 458: 43640.
  • 16
    Furumatsu T, Nishida K, Kawai A, Namba M, Inoue H, Ninomiya Y. Human chondrosarcoma secretes vascular endothelial growth factor to induce tumor angiogenesis and stores basic fibroblast growth factor for regulation of its own growth. Int J Cancer 2002; 97: 31322.
  • 17
    Shukunami C, Oshima Y, Hiraki Y. Molecular cloning of tenomodulin, a novel chondromodulin-I related gene. Biochem Biophys Res Commun 2001; 280: 13237.
  • 18
    Oshima Y, Shukunami C, Honda J et al. Expression and localization of tenomodulin, a transmembrane type chondromodulin-I-related angiogenesis inhibitor, in mouse eyes. Invest Ophthalmol Vis Sci 2003; 44: 181423.
  • 19
    Oshima Y, Sato K, Tashiro F et al. Anti-angiogenic action of the C-terminal domain of tenomodulin that shares homology with chondromodulin-I. J Cell Sci 2004; 117: 273144.
  • 20
    Hiraki Y, Mitsui K, Endo N et al. Molecular cloning of human chondromodulin-I, a cartilage-derived growth modulating factor, and its expression in Chinese hamster ovary cells. Eur J Biochem 1999; 260: 86978.
  • 21
    Shukunami C, Hiraki Y. Chondromodulin-I and tenomodulin: The negative control of angiogenesis in connective tissue. Curr Pharm Des 2007; 13: 210112.
  • 22
    Berezov A, Zhang HT, Greene MI, Murali R. Disabling erbB receptors with rationally designed exocyclic mimetics of antibodies: Structure-function analysis. J Med Chem 2001; 44: 256574.
  • 23
    Hasegawa A, Cheng X, Kajino K et al. Fas-disabling small exocyclic peptide mimetics limit apoptosis by an unexpected mechanism. Proc Natl Acad Sci USA 2004; 101: 6599604.
  • 24
    Sudhakar A, Sugimoto H, Yang C, Lively J, Zeisberg M, Kalluri R. Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci USA 2003; 100: 476671.
  • 25
    Wickstrom SA, Alitalo K, Keski-Oja J. Endostatin associates with lipid rafts and induces reorganization of the actin cytoskeleton via down-regulation of RhoA activity. J Biol Chem 2003; 278: 37895901.
  • 26
    Chillemi F, Francescato P, Ragg E, Cattaneo MG, Pola S, Vicentini L. Studies on the structure-activity relationship of endostatin: Synthesis of human endostatin peptides exhibiting potent antiangiogenic activities. J Med Chem 2003; 46: 416572.
  • 27
    Wickstrom SA, Alitalo K, Keski-Oja J. An endostatin-derived peptide interacts with integrins and regulates actin cytoskeleton and migration of endothelial cells. J Biol Chem 2004; 279: 2017885.
  • 28
    Cattaneo MG, Pola S, Francescato P, Chillemi F, Vicentini LM. Human endostatin-derived synthetic peptides possess potent antiangiogenic properties in vitro and in vivo. Exp Cell Res 2003; 283: 2306.
  • 29
    Maeshima Y, Manfredi M, Reimer C et al. Identification of the anti-angiogenic site within vascular basement membrane-derived tumstatin. J Biol Chem 2001; 276: 152408.
  • 30
    Maeshima Y, Yerramalla UL, Dhanabal M et al. Extracellular matrix-derived peptide binds to alpha(v)beta(3) integrin and inhibits angiogenesis. J Biol Chem 2001; 276: 3195968.
  • 31
    Ortega N, Werb Z. New functional roles for non-collagenous domains of basement membrane collagens. J Cell Sci 2002; 115: 420114.
  • 32
    Neame PJ, Treep JT, Young CN. An 18-kDa glycoprotein from bovine nasal cartilage. Isolation and primary structure of small, cartilage-derived glycoprotein. J Biol Chem 1990; 265: 962833.
  • 33
    Brandau O, Meindl A, Fassler R, Aszodi A. A novel gene, tendin, is strongly expressed in tendons and ligaments and shows high homology with chondromodulin-I. Dev Dyn 2001; 221: 7280.