Arecoline, the major alkaloid of areca nut, has been shown to cause strong genotoxicity and is considered a potential carcinogen. However, the detailed mechanism for arecoline-induced carcinogenesis remains obscure. In this study, we noticed that the levels of p21 and p27 increased in two oral squamous cell carcinoma cell lines with high confluence. Furthermore, when treated with arecoline, elevated levels of p21 and p27 could be downregulated through the reactive oxygen species/mTOR complex 1 (ROS/mTORC1) pathway. Although arecoline decreased the activity of mTORC1, the amounts of autophagosome-like vacuoles or type II LC3 remained unchanged, suggesting that the downregulation of p21 and p27 was independent of autophagy-mediated protein destruction. Arecoline also caused DNA damage through ROS, indicating that the reduced levels of p21 and p27 might facilitate G 1/S transition of the cell cycle and subsequently lead to error-prone DNA replication. In conclusion, these data have provided a possible mechanism for arecoline-induced carcinogenesis in subcytolytic doses in vivo. (Cancer Sci 2012; 103: 1221–1229)