SEARCH

SEARCH BY CITATION

References

  • Altmann, C.R., Bell, E., Sczyrba, A., et al. (2001) Microarray-based analysis of early development in Xenopus laevis. Dev. Biol. 236, 6475.
  • Amaya, E., Musci., T.J. & Kirschner, M.W. (1991) Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66, 257270.
  • Amaya, E., Stein, P.A., Musci., T.J. & Kirschner, M.W. (1993) FGF signaling in the early specification of mesoderm in Xenopus. Development 118, 477487.
  • Bottcher, R.T., Pollet, N., Delius, H. & Niehrs, C. (2004) The transmembrane protein XFLRT3 forms a complex with FGF receptors and promotes FGF signalling. Nature Cell Biol. 6, 3844.
  • Buttitta, L., Tanaka, T.S., Chen, A.E., Ko, M.S. & Fan, C.M. (2003) Microarray analysis of somitogenesis reveals novel targets of different WNT signaling pathways in the somitic mesoderm. Dev. Biol. 258, 91104.
  • Conlon, F.L., Sedgwick, S.C., Weston, K. & Smith, J.C. (1996) Inhibition of Xbra transcription activation causes defects in mesodermal patterning and reveals autoregulation of Xbra in dorsal mesoderm. Development 122, 24272435.
  • Favata, M.F., Horiuchi, K.Y., Manos, E.J., et al. (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 273, 1862318632.
  • Frazzetto, G., Klingbeil, P. & Bouwmeester, T. (2002) Xenopus marginal coil (Xmc), a novel FGF inducible cytosolic coiled-coil protein regulating gastrulation movements. Mech. Dev. 113, 314.
  • Gotoh, Y., Masuyama, N., Suzuki, A., Ueno, N. & Nishida, E. (1995) Involvement of the MAP kinase cascade in Xenopus mesoderm induction. EMBO J. 14, 24912498.
  • Gotoh, Y. & Nishida, E. (1996) Signals for mesoderm induction. Roles of fibroblast growth factor (FGF)/mitogen-activated protein kinase (MAPK) pathway. Biochim. Biophy. Acta 1288, F1F7.
  • Hackel, P.O., Gishizky, M. & Ullrich, A. (2001) Mig-6 is a negative regulator of the epidermal growth factor receptor signal. Biol. Chem. 382, 16491662.
  • Harland, R.M. (1991) In situ hybridization: an improved whole-mount method for Xenopus embryos. Meth Cell Biol. 36, 685695.
  • Hoffman, M.P., Kidder, B.L., Steinberg, Z.L., et al. (2002) Gene expression profiles of mouse submandibular gland development: FGFR1 regulates branching morphogenesis in vitro through BMP- and FGF-dependent mechanisms. Development 129, 57675778.
  • Kanning, K.C., Hudson, M., Amieux, P.S., Wiley, J.C., Bothwell, M. & Schecterson, L.C. (2003) Proteolytic processing of the p75 neurotrophin receptor and two homologs generates C-terminal fragments with signaling capability. J. Neurosci. 23, 54255436.
  • Keyse, S.M. & Emslie, E.A. (1992) Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature 359, 644647.
  • Kim, G.J. & Nishida, H. (2001) Role of the FGF and MEK signaling pathway in the ascidian embryo. Dev. Growth Differ. 43, 521533.
  • Klymkowsky, M.W. & Hanken, J. (1991) Whole-mount staining of Xenopus and other vertebrates. In: Xenopus Laevis: Practical Uses in Cell and Molecular Biology (eds B.K.Kay & H.B.Peng), pp. 419441, New York: Academic Press.
  • LaBonne, C., Burke, B. & Whitman, M. (1995) Role of MAP kinase in mesoderm induction and axial patterning during Xenopus development. Development 121, 14651486.
  • Lin, C.Y., Li, C.C., Huang, P.H. & Lee, F.J. (2002) A developmentally regulated ARF-like 5 protein (ARL5), localized to nuclei and nucleoli, interacts with heterochromatin protein 1. J. Cell Sci. 115, 44334445.
  • Makkinje, A., Quinn, D.A., Chen, A., et al. (2000) Gene 33/Mig-6, a transcriptionally inducible adapter protein that binds GTP-Cdc42 and activates SAPK/JNK. A potential marker transcript for chronic pathologic conditions, such as diabetic nephropathy. Possible role in the response to persistent stress. J. Biol. Chem. 275, 1783817847.
  • Malcolm, E.F., Isaacs, H.V. & Pownall, M.E. (2002) eFGF is required for activation of XmyoD expression in the myogenic cell lineage of Xenopus laevis. Development 129, 13071315.
  • Mohammadi, M., McMahon, G., Sun, L., et al. (1997) Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276, 955960.
  • Monsoro-Burq, A.-H., Fletcher, R.B. & Harland, R.M. (2003) Neural crest induction by paraxial mesoderm in Xenopus embryos requires FGF signals. Development 130, 31113124.
  • Montero, J.A., Ganan, Y., Macias, D., et al. (2001) Role of FGFs in the control of programmed cell death during limb development. Development 128, 20752084.
  • Musci., T.J., Amaya, E. & Kirschner, M.W. (1990) Regulation of the fibroblast growth factor receptor in early Xenopus embryos. Proc. Natl. Acad. Sci. USA 87, 83658369.
  • Nagai, T., Ibata, K., Park, E.S., Kubota, M., Mikoshiba, K. & Miyawaki, A. (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nature Biotechnol. 20, 8790.
  • Nieuwkoop, P.D. & Faber, J. (1967) A Normal Table Of Xenopus laevis, Amsterdam: North Holland Publishing.
  • Nutt, S.L., Dingwell, K.S., Holt, C.E. & Amaya, E. (2001) Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning. Genes Dev. 15, 11521166.
  • Pownall, M.E., Welm, B.E., Freeman, K.W., Spencer, D.M., Rosen, J.M. & Isaacs, H.V. (2003) An inducible system for the study of FGF signalling in early amphibian development. Dev. Biol. 256, 8999.
  • Saka, Y., Tada, M. & Smith, J.C. (2000) A screen for targets of the Xenopus T-box gene Xbra. Mech. Dev. 93, 2739.
  • Schageman, J.J., Basit, M., Gallardo, T.D., Garner, H.R. & Shohet, R.V. (2002) MarC-V: a spreadsheet-based tool for analysis, normalization, and visualization of single cDNA microarray experiments. Biotechniques 32, 338344.
  • Shinya, M., Koshida, S., Sawada, A., Kuroiwa, A. & Takeda, H. (2001) Fgf signalling through MAPK cascade is required for development of the subpallial telencephalon in zebrafish embryos. Development 128, 41534164.
  • Smith, J.C., Price, B.M., Green, J.B., Weigel, D. & Herrmann, B.G. (1991) Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67, 7987.
  • Tateossian, H., Powles, N., Dickinson, R., Ficker, M. & Maconochie, M. (2004) Determination of downstream targets of FGF signalling using gene trap and cDNA subtractive approaches. Exp. Cell Res. 292, 101114.
  • Walshe, J., Maroon, H., McGonnell, I.M., Dickson, C. & Mason, I. (2002) Establishment of hindbrain segmental identity requires signaling by FGF3 and FGF8. Curr. Biol. 12, 11171123.
  • White, R.J., Sun, B.I., Sive, H.L. & Smith, J.C. (2002) Direct and indirect regulation of derriere, a Xenopus mesoderm-inducing factor, by VegT. Development 129, 48674876.
  • Xu, Y. (2002) Sphingosylphosphorylcholine and lysophosphatidylcholine: G protein-coupled receptors and receptor-mediated signal transduction. Biochim. Biophys. Acta 1582, 8188.
  • Xu, Y., Hong, G., Wu, W., Baudhuin, L.M., Xiao, Y.J. & Damron, D.S. (2000) Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nature Cell Biol. 2, 261267.
  • Yamamoto, T.S., Takagi, C., Hyodo, A.C. & Ueno, N. (2001) Suppression of head formation by Xmsx-1 through the inhibition of intracellular nodal signaling. Development 128, 27692779.
  • Zhu, K., Baudhuin, L.M., Hong, G., et al. (2001) Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for the G protein-coupled receptor GPR4. J. Biol. Chem. 276, 4132541335.