• 1
    National Survey on Drug Use and Health. The NSDHU Report: Methamphetamine use, Abuse, and Dependence: 2002, 2003, 2004. 2005. Available at: (accessed 22 January 2007).
  • 2
    Ricaurte G. A., Schuster C. R., Seiden L. S. Long-term effects of repeated methylamphetamine administration on dopamine and serotonin neurons in the rat brain: a regional study. Brain Res 1980; 193: 15363.
  • 3
    Ricaurte G. A., Guillery R. W., Seiden L. S., Schuster C. R., Moore R. Y. Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain Res 1982; 235: 93103.
  • 4
    Stephans S. E., Whittingham T. S., Douglas A. J., Lust W. D., Yamamoto B. K. Substrates of energy metabolism attenuate methamphetamine-induced neurotoxicity in striatum. J Neurochem 1998; 71: 61321.
  • 5
    Bakhit C., Morgan M. E., Gibb J. W. Propranolol differentially blocks the methamphetamine-induced depression of tryptophan hydroxylase in various rat brain regions. Neurosci Lett 1981; 23: 99103.
  • 6
    Wagner G. C., Ricaurte G. A., Seiden L. S., Schuster C. R., Miller R. J., Westley J. Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine. Brain Res 1980; 181: 15160.
  • 7
    McCann U. D., Wong D. F., Yokoi F., Villemagne V., Dannals R. F., Ricaurte G. A. Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35,428. J Neurosci 1998; 18: 841722.
  • 8
    Volkow N. D., Chang L., Wang G. J., Fowler J. S., Leonido-Yee M., Franceschi D. et al. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 2001; 158: 37782.
  • 9
    Goldstein D. S., Eisenhofer G. Sympathetic nervous system physiology and pathophysiology in coping with the environment. In: McEwenB. S., GoodmanH. M., editors. Handbook of Physiology: a Critical Comprehensive Presentation of Physiological Knowledge and Concepts. Section 7, vol. IV. Coping with the Environment: Neural and Endocrine Mechanisms. Oxford: American Physiological Society; 2000, p. 2143.
  • 10
    Herman J. P., Cullinan W. E. Neurocircuitry of stress: central control of the hypothalamo–pituitary–adrenocortical axis. Trends Neurosci 1997; 20: 7884.
  • 11
    Chrousos G. P., Gold P. W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 1992; 267: 124452.
  • 12
    Bremner J. D., Randall P., Scott T. M., Bronen R. A., Seibyl J. P., Southwick S. M. et al. MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am J Psychiatry 1995; 152: 97381.
  • 13
    Stein M. B., Koverola C., Hanna C., Torchia M. G., McClarty B. Hippocampal volume in women victimized by childhood sexual abuse. Psychol Med 1997; 27: 9519.
  • 14
    Watanabe Y., Gould E., McEwen B. S. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res 1992; 588: 3415.
  • 15
    Sousa N., Lukoyanov N. V., Madeira M. D., Almeida O. F., Paula-Barbosa M. M. Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 2000; 97: 25366.
  • 16
    Soderpalm A., Nikolayev L., De Wit H. Effects of stress on responses to methamphetamine in humans. Psychopharmacology (Berl) 2003; 170: 18899.
  • 17
    Sinha R., Garcia M., Paliwal P., Kreek M. J., Rounsaville B. J. Stress-induced cocaine craving and hypothalamic–pituitary–adrenal responses are predictive of cocaine relapse outcomes. Arch Gen Psychiatry 2006; 63: 32431.
  • 18
    Piazza P. V., Le Moal M. L. Pathophysiological basis of vulnerability to drug abuse: role of an interaction between stress, glucocorticoids, and dopaminergic neurons. Annu Rev Pharmacol Toxicol 1996; 36: 35978.
  • 19
    Stephans S. E., Yamamoto B. K. Methamphetamine-induced neurotoxicity: roles for glutamate and dopamine efflux. Synapse, 1994; 17: 2039.
  • 20
    Moghaddam B. Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 1993; 60: 16507.
  • 21
    Abercrombie E. D., Keefe K. A., DiFrischia D. S., Zigmond M. J. Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J Neurochem 1989; 52: 16558.
  • 22
    Keefe K. A., Sved A. F., Zigmond M. J., Abercrombie E. D. Stress-induced dopamine release in the neostriatum: evaluation of the role of action potentials in nigrostriatal dopamine neurons or local initiation by endogenous excitatory amino acids. J Neurochem 1993; 61: 194352.
  • 23
    Kalivas P. W., Duffy P. Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress. Brain Res 1995; 675: 3258.
  • 24
    Broom S. L., Yamamoto B. K. Effects of subchronic methamphetamine exposure on basal dopamine and stress-induced dopamine release in the nucleus accumbens shell of rats. Psychopharmacology (Berl), 2005; 181: 46776.
  • 25
    Piazza P. V., Barrot M., Rouge-Pont F., Marinelli M., Maccari S., Abrous D. N. et al. Suppression of glucocorticoid secretion and antipsychotic drugs have similar effects on the mesolimbic dopaminergic transmission. Proc Natl Acad Sci USA 1996; 93: 1544550.
  • 26
    Rouge-Pont F., Marinelli M., Le Moal M., Simon H., Piazza P. V. Stress-induced sensitization and glucocorticoids. II. Sensitization of the increase in extracellular dopamine induced by cocaine depends on stress-induced corticosterone secretion. J Neurosci 1995; 15: 718995.
  • 27
    Matuszewich L., Yamamoto B. K. Chronic stress augments the long-term and acute effects of methamphetamine. Neuroscience 2004; 124: 63746.
  • 28
    Giovanni A., Liang L. P., Hastings T. G., Zigmond M. J. Estimating hydroxyl radical content in rat brain using systemic and intraventricular salicylate: impact of methamphetamine. J Neurochem 1995; 64: 181925.
  • 29
    Fleckenstein A. E., Wilkins D. G., Gibb J. W., Hanson G. R. Interaction between hyperthermia and oxygen radical formation in the 5-hydroxytryptaminergic response to a single methamphetamine administration. J Pharmacol Exp Ther 1997; 283: 2815.
  • 30
    Yamamoto B. K., Zhu W. The effects of methamphetamine on the production of free radicals and oxidative stress. J Pharmacol Exp Ther 1998; 287: 10714.
  • 31
    Acikgoz O., Gonenc S., Kayatekin B. M., Uysal N., Pekcetin C., Semin I. et al. Methamphetamine causes lipid peroxidation and an increase in superoxide dismutase activity in the rat striatum. Brain Res 1998; 813: 2002.
  • 32
    Gluck M. R., Moy L. Y., Jayatilleke E., Hogan K. A., Manzino L., Sonsalla P. K. Parallel increases in lipid and protein oxidative markers in several mouse brain regions after methamphetamine treatment. J Neurochem 2001; 79: 15260.
  • 33
    Iwashita A., Mihara K., Yamazaki S., Matsuura S., Ishida J., Yamamoto H. et al. A new poly (ADP-ribose) polymerase inhibitor, FR261529 [2-(4-chlorophenyl)-5-quinoxalinecarboxamide], ameliorates methamphetamine-induced dopaminergic neurotoxicity in mice. J Pharmacol Exp Ther 2004; 310: 111424.
  • 34
    Moszczynska A., Turenne S., Kish S. J. Rat striatal levels of the antioxidant glutathione are decreased following binge administration of methamphetamine. Neurosci Lett 1998; 255: 4952.
  • 35
    Harold C., Wallace T., Friedman R., Gudelsky G., Yamamoto B. Methamphetamine selectively alters brain glutathione. Eur J Pharmacol 2000; 400: 99102.
  • 36
    De Vito M. J., Wagner G. C. Methamphetamine-induced neuronal damage: a possible role for free radicals. Neuropharmacology 1989; 28: 114550.
  • 37
    Cappon G. D., Broening H. W., Pu C., Morford L., Vorhees C. V. alpha-Phenyl-N-tert-butyl nitrone attenuates methamphetamine-induced depletion of striatal dopamine without altering hyperthermia. Synapse 1996; 24: 17381.
  • 38
    Lockhart B., Roger A., Bonhomme N., Goldstein S., Lestage P. In vivo neuroprotective effects of the novel imidazolyl nitrone free-radical scavenger (Z)-alpha-[2-thiazol-2-yl) imidazol-4-yl]-N-tert-butylnitrone (S34176). Eur J Pharmacol 2005; 511: 12736.
  • 39
    Hirata H., Ladenheim B., Rothman R. B., Epstein C., Cadet J. L. Methamphetamine-induced serotonin neurotoxicity is mediated by superoxide radicals. Brain Res 1995;677: 3457.
  • 40
    Hogan K. A., Staal R. G., Sonsalla P. K. Analysis of VMAT2 binding after methamphetamine or MPTP treatment: disparity between homogenates and vesicle preparations. J Neurochem 2000; 74: 221720.
  • 41
    Eyerman D. J., Yamamoto B. K. Lobeline attenuates methamphetamine-induced changes in vesicular monoamine transporter 2 immunoreactivity and monoamine depletions in the striatum. J Pharmacol Exp Ther 2005; 312: 1609.
  • 42
    Brown J. M., Hanson G. R., Fleckenstein A. E. Methamphetamine rapidly decreases vesicular dopamine uptake. J Neurochem 2000; 74: 22213.
  • 43
    LaVoie M. J., Hastings T. G. Peroxynitrite- and nitrite-induced oxidation of dopamine: implications for nitric oxide in dopaminergic cell loss. J Neurochem 1999; 73: 254654.
  • 44
    LaVoie M. J., Hastings T. G. Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J Neurosci 1999; 19: 148491.
  • 45
    Hastings T. G., Lewis D. A., Zigmond M. J. Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc Natl Acad Sci USA 1996; 93: 195661.
  • 46
    McIntosh L. J., Sapolsky R. M. Glucocorticoids increase the accumulation of reactive oxygen species and enhance adriamycin-induced toxicity in neuronal culture. Exp Neurol 1996; 141: 2016.
  • 47
    Son G. H., Geum D., Chung S., Park E., Lee K. H., Choi S. et al. A protective role of 27-kDa heat shock protein in glucocorticoid-evoked apoptotic cell death of hippocampal progenitor cells. Biochem Biophys Res Commun 2005; 338: 17518.
  • 48
    Ahlbom E., Gogvadze V., Chen M., Celsi G., Ceccatelli S. Prenatal exposure to high levels of glucocorticoids increases the susceptibility of cerebellar granule cells to oxidative stress-induced cell death. Proc Natl Acad Sci USA 2000; 97: 1472630.
  • 49
    Liu J., Wang X., Shigenaga M. K., Yeo H. C., Mori A., Ames B. N. Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of rats. FASEB J 1996; 10: 15328.
  • 50
    Madrigal J. L., Olivenza R., Moro M. A., Lizasoain I., Lorenzo P., Rodrigo J. et al. Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology 2001; 24: 4209.
  • 51
    Matsumoto K., Yobimoto K., Huong N. T., Abdel-Fattah M., Van Hien T., Watanabe H. Psychological stress-induced enhancement of brain lipid peroxidation via nitric oxide systems and its modulation by anxiolytic and anxiogenic drugs in mice. Brain Res 1999; 839: 7484.
  • 52
    Huong N. T., Murakami Y., Tohda M., Watanabe H., Matsumoto K. Social isolation stress-induced oxidative damage in mouse brain and its modulation by majonoside-R2, a Vietnamese ginseng saponin. Biol Pharm Bull 2005; 28: 138993.
  • 53
    McIntosh L. J., Hong K. E., Sapolsky R. M. Glucocorticoids may alter antioxidant enzyme capacity in the brain: baseline studies. Brain Res 1998; 791: 20914.
  • 54
    Patel R., McIntosh L., McLaughlin J., Brooke S., Nimon V., Sapolsky R. Disruptive effects of glucocorticoids on glutathione peroxidase biochemistry in hippocampal cultures. J Neurochem 2002; 82: 11825.
  • 55
    Raudensky J., Cunningham J., Tonkiss J., Yamamoto B. K. Effects of stress and methamphetamine on glutamate function in the hippocampus. Program no. 802.8. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience; 2004. Available at: (accessed 22 January 2007).
  • 56
    Zucker M., Weizman A., Rehavi M. Repeated swim stress leads to down-regulation of vesicular monoamine transporter 2 in rat brain nucleus accumbens and striatum. Eur Neuropsychopharmacol 2005; 15: 199201.
  • 57
    Gubellini P., Pisani A., Centonze D., Bernardi G., Calabresi P. Metabotropic glutamate receptors and striatal synaptic plasticity: implications for neurological diseases. Prog Neurobiol 2004; 74: 271300.
  • 58
    Calabresi P., Gubellini P., Centonze D., Picconi B., Bernardi G., Chergui K. et al. Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity. J Neurosci 2000; 20: 844351.
  • 59
    Garthwaite J. Glutamate, nitric oxide and cell–cell signalling in the nervous system. Trends Neurosci 1991; 14: 607.
  • 60
    Dawson V. L., Dawson T. M. Nitric oxide neurotoxicity. J Chem Neuroanat 1996; 10: 17990.
  • 61
    Gunasekar P. G., Kanthasamy A. G., Borowitz J. L., Isom G. E. NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: implication for cell death. J Neurochem 1995; 65: 201621.
  • 62
    Reynolds I. J., Hastings T. G. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosci 1995; 15: 331827.
  • 63
    Nash J. F., Yamamoto B. K. Methamphetamine neurotoxicity and striatal glutamate release: comparison to 3,4-methylenedioxymethamphetamine. Brain Res 1992; 581: 23743.
  • 64
    Abekawa T., Ohmori T., Koyama T. Effects of repeated administration of a high dose of methamphetamine on dopamine and glutamate release in rat striatum and nucleus accumbens. Brain Res 1994; 643: 27681.
  • 65
    Rocher C., Gardier A. M. Effects of repeated systemic administration of d-Fenfluramine on serotonin and glutamate release in rat ventral hippocampus: comparison with methamphetamine using in vivo microdialysis. Naunyn Schmiedebergs Arch Pharmacol 2001; 363: 4228.
  • 66
    Mark K. A., Eyerman D. J., Yamamoto B. K. The effects of methamphetamine on the vesicular glutamate transporter. Program no. 681.18.2005 Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience; 2005. Available at: (accessed 22 January 2007).
  • 67
    Mark K. A., Soghomonian J. J., Yamamoto B. K. High-dose methamphetamine acutely activates the striatonigral pathway to increase striatal glutamate and mediate long-term dopamine toxicity. J Neurosci 2004; 24: 1144956.
  • 68
    Altar C. A., Hauser K. Topography of substantia nigra innervation by D1 receptor-containing striatal neurons. Brain Res 1987; 410: 111.
  • 69
    Aceves J., Floran B., Sierra A., Mariscal S. D-1 receptor mediated modulation of the release of gamma-aminobutyric acid by endogenous dopamine in the basal ganglia of the rat. Prog Neuropsychopharmacol Biol Psychiatry 1995; 19: 72739.
  • 70
    Matuszewich L., Yamamoto B. K. Modulation of GABA release by dopamine in the substantia nigra. Synapse 1999; 32: 2936.
  • 71
    Daniels R. W., Collins C. A., Gelfand M. V., Dant J., Brooks E. S., Krantz D. E. et al. Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content. J Neurosci 2004; 24: 1046674.
  • 72
    Fremeau R. T. Jr, Voglmaier S., Seal R. P., Edwards R. H. VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 2004; 27: 98103.
  • 73
    Burrows K. B., Nixdorf W. L., Yamamoto B. K. Central administration of methamphetamine synergizes with metabolic inhibition to deplete striatal monoamines. J Pharmacol Exp Ther 2000; 292: 85360.
  • 74
    Burrows K. B., Yamamoto B. K. Local perfusion of methamphetamine synergizes with hyperthermia to produce toxicity. Program no. 8028.2004. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience; 2000. Available at: (accessed 22 January 2007).
  • 75
    Deng X., Cadet J. L. Methamphetamine administration causes overexpression of nNOS in the mouse striatum. Brain Res 1999; 851: 2547.
  • 76
    Sonsalla P. K., Nicklas W. J., Heikkila R. E. Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity. Science 1989; 243: 398400.
  • 77
    Marshall J. F., O'Dell S. J., Weihmuller F. B. Dopamine–glutamate interactions in methamphetamine-induced neurotoxicity. J Neural Transm Gen Sect 1993; 91: 24154.
  • 78
    Battaglia G., Fornai F., Busceti C. L., Aloisi G., Cerrito F., De Blasi A. et al. Selective blockade of mGlu5 metabotropic glutamate receptors is protective against methamphetamine neurotoxicity. J Neurosci 2002; 22: 213541.
  • 79
    Golembiowska K., Konieczny J., Wolfarth S., Ossowska K. Neuroprotective action of MPEP, a selective mGluR5 antagonist, in methamphetamine-induced dopaminergic neurotoxicity is associated with a decrease in dopamine outflow and inhibition of hyperthermia in rats. Neuropharmacology 2003; 45: 48492.
  • 80
    Farfel G. M., Vosmer G. L., Seiden L. S. The N-methyl-D-aspartate antagonist MK-801 protects against serotonin depletions induced by methamphetamine, 3,4-methylenedioxymethamphetamine and p-chloroamphetamine. Brain Res 1992; 595: 12117.
  • 81
    Di Monte D. A., Royland J. E., Jakowec M. W., Langston J. W. Role of nitric oxide in methamphetamine neurotoxicity: protection by 7-nitroindazole, an inhibitor of neuronal nitric oxide synthase. J Neurochem 1996; 67: 244350.
  • 82
    Ali S. F., Itzhak Y. Effects of 7-nitroindazole, an NOS inhibitor on methamphetamine-induced dopaminergic and serotonergic neurotoxicity in mice. Ann NY Acad Sci 1998; 844: 12230.
  • 83
    Imam S. Z., El Yazal J., Newport G. D., Itzhak Y., Cadet J. L., Slikker W. Jr et al. Methamphetamine-induced dopaminergic neurotoxicity: role of peroxynitrite and neuroprotective role of antioxidants and peroxynitrite decomposition catalysts. Ann NY Acad Sci 2001; 939: 36680.
  • 84
    Sanchez V., Zeini M., Camarero J., O'Shea E., Bosca L., Green A. R. et al. The nNOS inhibitor, AR-R17477AR, prevents the loss of NF68 immunoreactivity induced by methamphetamine in the mouse striatum. J Neurochem 2003; 85: 51524.
  • 85
    Itzhak Y., Gandia C., Huang P. L., Ali S. F. Resistance of neuronal nitric oxide synthase-deficient mice to methamphetamine-induced dopaminergic neurotoxicity. J Pharmacol Exp Ther 1998; 284: 10407.
  • 86
    Siman R., Noszek J. C., Kegerise C. Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. J Neurosci 1989; 9: 157990.
  • 87
    Neumar R. W., Meng F. H., Mills A. M., Xu Y. A., Zhang C., Welsh F. A. et al. Calpain activity in the rat brain after transient forebrain ischemia. Exp Neurol 2001; 170: 2735.
  • 88
    Pike B. R., Flint J., Dutta S., Johnson E., Wang K. K., Hayes R. L. Accumulation of non-erythroid alpha II-spectrin and calpain-cleaved alpha II-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats. J Neurochem 2001; 78: 1297306.
  • 89
    Staszewski R. D., Yamamoto B. K. Methamphetamine-induced spectrin proteolysis in the rat striatum. J Neurochem, 2006; 96: 126776.
  • 90
    Venero C., Borrell J. Rapid glucocorticoid effects on excitatory amino acid levels in the hippocampus: a microdialysis study in freely moving rats. Eur J Neurosci 1999; 11: 246573.
  • 91
    Lowy M. T., Wittenberg L., Yamamoto B. K. Effect of acute stress on hippocampal glutamate levels and spectrin proteolysis in young and aged rats. J Neurochem 1995; 65: 26874.
  • 92
    Sunanda Rao B. S., Raju T. R. Restraint stress-induced alterations in the levels of biogenic amines, amino acids, and AChE activity in the hippocampus. Neurochem Res 2000; 25: 154752.
  • 93
    Fontella F. U., Vendite D. A., Tabajara A. S., Porciuncula L. O., Da Silva Torress I. L., Jardim F. M. et al. Repeated restraint stress alters hippocampal glutamate uptake and release in the rat. Neurochem Res 2004; 29: 17039.
  • 94
    Lowy M. T., Gault L., Yamamoto B. K. Adrenalectomy attenuates stress-induced elevations in extracellular glutamate concentrations in the hippocampus. J Neurochem 1993; 61: 195760.
  • 95
    Moghaddam B., Bolinao M. L., Stein-Behrens B., Sapolsky R. Glucocorticoids mediate the stress-induced extracellular accumulation of glutamate. Brain Res 1994; 655: 2514.
  • 96
    Woolley C. S., Gould E., McEwen B. S. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res 1990; 531: 22531.
  • 97
    Magarinos A. M., McEwen B. S. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 1995; 69: 8998.
  • 98
    Armanini M. P., Hutchins C., Stein B. A., Sapolsky R. M. Glucocorticoid endangerment of hippocampal neurons is NMDA-receptor dependent. Brain Res 1990; 532: 712.
  • 99
    Stein-Behrens B. A., Elliott E. M., Miller C. A., Schilling J. W., Newcombe R., Sapolsky R. M. Glucocorticoids exacerbate kainic acid-induced extracellular accumulation of excitatory amino acids in the rat hippocampus. J Neurochem 1992; 58: 17305.
  • 100
    Stein-Behrens B. A., Lin W. J., Sapolsky R. M. Physiological elevations of glucocorticoids potentiate glutamate accumulation in the hippocampus. J Neurochem 1994; 63: 596602.
  • 101
    Mulholland P. J., Self R. L., Hensley A. K., Little H. J., Littleton J. M., Prendergast M. A. A 24 h corticosterone exposure exacerbates excitotoxic insult in rat hippocampal slice cultures independently of glucocorticoid receptor activation or protein synthesis. Brain Res 2006; 1082: 16572.
  • 102
    Danbolt N. C. Glutamate uptake. Prog Neurobiol 2001; 65: 1105.
  • 103
    Reagan L. P., Rosell D. R., Wood G. E., Spedding M., Munoz C., Rothstein J. et al. Chronic restraint stress up-regulates GLT-1 mRNA and protein expression in the rat hippocampus: reversal by tianeptine. Proc Natl Acad Sci USA 2004; 101: 217984.
  • 104
    Wood G. E., Young L. T., Reagan L. P., Chen B., McEwen B. S. Stress-induced structural remodeling in hippocampus: prevention by lithium treatment. Proc Natl Acad Sci USA 2004; 101: 39738.
  • 105
    Virgin C. E. Jr, Ha T. P., Packan D. R., Tombaugh G. C., Yang S. H., Horner H. C. et al. Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity. J Neurochem 1991; 57: 14228.
  • 106
    Echeverry M. B., Guimaraes F. S., Del Bel E. A. Acute and delayed restraint stress-induced changes in nitric oxide producing neurons in limbic regions. Neuroscience 2004; 125: 98193.
  • 107
    Olivenza R., Moro M. A., Lizasoain I., Lorenzo P., Fernandez A. P., Rodrigo J. et al. Chronic stress induces the expression of inducible nitric oxide synthase in rat brain cortex. J Neurochem 2000; 74: 78591.
  • 108
    Harvey B. H., Oosthuizen F., Brand L., Wegener G., Stein D. J. Stress–restress evokes sustained iNOS activity and altered GABA levels and NMDA receptors in rat hippocampus. Psychopharmacology (Berl) 2004; 175: 494502.
  • 109
    Raudensky J., Yamamoto B. K. Effects of stress and methamphetamine on hippocampal glutamate and plasma corticosterone. Program no. 341.2. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience; 2005. Available at: (accessed 22 January 2007).
  • 110
    Tata D. A., Yamamoto B. K. Chronic stress enhance extracellular glutamate concentrations in the striatum after methamphetamine. Program no. 341.5. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience; 2005. Available at: (accessed 22 January 2007).
  • 111
    Chan P., Di Monte D. A., Luo J. J., DeLanney L. E., Irwin I., Langston J. W. Rapid ATP loss caused by methamphetamine in the mouse striatum: relationship between energy impairment and dopaminergic neurotoxicity. J Neurochem 1994; 62: 24847.
  • 112
    Burrows K. B., Gudelsky G., Yamamoto B. K. Rapid and transient inhibition of mitochondrial function following methamphetamine or 3,4-methylenedioxymethamphetamine administration. Eur J Pharmacol 2000; 398: 118.
  • 113
    Brown J. M., Quinton M. S., Yamamoto B. K. Methamphetamine-induced inhibition of mitochondrial complex II: roles of glutamate and peroxynitrite. J Neurochem 2005; 95: 42936.
  • 114
    Brown J. M., Yamamoto B. K. Effects of amphetamines on mitochondrial function: role of free radicals and oxidative stress. Pharmacol Ther 2003; 99: 4553.
  • 115
    Schinder A. F., Olson E. C., Spitzer N. C., Montal M. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J Neurosci 1996; 16: 612533.
  • 116
    Lizasoain I., Moro M. A., Knowles R. G., Darley-Usmar V., Moncada S. Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose. Biochem J 1996; 314: 87780.
  • 117
    Messam C. A., Greene J. G., Greenamyre J. T., Robinson M. B. Intrastriatal injections of the succinate dehydrogenase inhibitor, malonate, cause a rise in extracellular amino acids that is blocked by MK-801. Brain Res 1995; 684: 2214.
  • 118
    Moutsatsou P., Psarra A. M., Tsiapara A., Paraskevakou H., Davaris P., Sekeris C. E. Localization of the glucocorticoid receptor in rat brain mitochondria. Arch Biochem Biophys 2001; 386: 6978.
  • 119
    Morin C., Zini R., Simon N., Charbonnier P., Tillement J. P., Le Louet H. Low glucocorticoid concentrations decrease oxidative phosphorylation of isolated rat brain mitochondria: an additional effect of dexamethasone. Fundam Clin Pharmacol 2000; 14: 493500.
  • 120
    Tombaugh G. C., Sapolsky R. M. Corticosterone accelerates hypoxia- and cyanide-induced ATP loss in cultured hippocampal astrocytes. Brain Res 1992; 588: 1548.
  • 121
    Soldani P., Pellegrini A., Gesi M., Natale G., Lenzi P., Martini F. et al. Gender difference in noise stress-induced ultrastructural changes in rat myocardium. J Submicrosc Cytol Pathol 1997; 29: 52736.
  • 122
    Simon N., Jolliet P., Morin C., Zini R., Urien S., Tillement J. P. Glucocorticoids decrease cytochrome c oxidase activity of isolated rat kidney mitochondria. FEBS Lett 1998; 435: 258.
  • 123
    Coburn-Litvak P. S., Tata D. A., Gorby H. E., McCloskey D. P., Richardson G., Anderson B. J. Chronic corticosterone affects brain weight, and mitochondrial, but not glial volume fraction in hippocampal area CA3. Neuroscience 2004; 124: 42938.
  • 124
    Miller M. M., Antecka E., Sapolsky R. Short term effects of glucocorticoids upon hippocampal ultrastructure. Exp Brain Res 1989; 77: 30914.
  • 125
    Xie T., McCann U. D., Kim S., Yuan J., Ricaurte G. A. Effect of temperature on dopamine transporter function and intracellular accumulation of methamphetamine: implications for methamphetamine-induced dopaminergic neurotoxicity. J Neurosci 2000; 20: 783845.
  • 126
    Ali S. F., Newport G. D., Holson R. R., Slikker W. Jr, Bowyer J. F. Low environmental temperatures or pharmacologic agents that produce hypothermia decrease methamphetamine neurotoxicity in mice. Brain Res 1994; 658: 338.
  • 127
    Miller D. B., O'Callaghan J. P. Environment-, drug- and stress-induced alterations in body temperature affect the neurotoxicity of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther 1994; 270: 75260.
  • 128
    Albers D. S., Sonsalla P. K. Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents. J Pharmacol Exp Ther 1995; 275: 110414.
  • 129
    Matuszewich L., Yamamoto B. K. Long-lasting effects of chronic stress on DOI-induced hyperthermia in male rats. Psychopharmacology (Berl) 2003; 169: 16975.
  • 130
    Brown P. J., Stout R. L., Gannon-Rowley J. Substance use disorder-PTSD comorbidity. Patients' perceptions of symptom interplay and treatment issues. J Subst Abuse Treat 1998; 15: 4458.