SEARCH

SEARCH BY CITATION

SUMMARY

Secreted proteins are known to play decisive roles in plant–fungus interactions. To study the molecular details of the interaction between the xylem-colonizing, plant-pathogenic fungus Fusarium oxysporum and tomato, the composition of the xylem sap proteome of infected tomato plants was investigated and compared with that of healthy plants. Two-dimensional gel separation and mass spectrometry yielded peptide masses and peptide sequences of 33 different proteins. Despite the absence of complete genome sequences of either tomato or F. oxysporum, 21 proteins were identified as tomato proteins and seven as fungal proteins. Thirteen of the tomato proteins were specific for infected plants. Sixteen tomato proteins were found in xylem sap for the first time, four of which were identified based on matches to expressed sequences only. Coding sequences for new proteins from F. oxysporum were identified through either direct matching to a database sequence, matching of peptide sequences to genome or expressed sequence tag databases of other Fusarium species, or PCR with degenerate primers on cDNA derived from infected plants followed by screening of a F. oxysporum BAC library. Together, these findings provide an excellent basis for further exploration of the interaction between xylem-colonizing pathogens and their hosts.