Mass spectrometry-based metabolomics application to identify quantitative resistance-related metabolites in barley against Fusarium head blight




Quantitative resistance is generally controlled by several genes. More than 100 resistance quantitative trait loci (QTLs) have been identified in wheat and barley against Fusarium head blight (FHB), caused by Gibberella zeae (anamorph: Fusarium graminearum), implying the possible occurrence of several resistance mechanisms. The objective of this study was to apply metabolomics to identify the metabolites in barley that are related to resistance against FHB. Barley genotypes, Chevron and Stander, were inoculated with mock or pathogen during the anthesis stage. The disease severity was assessed as the proportion of spikelets diseased. The genotype Chevron (0.33) was found to have a higher level of quantitative resistance than Stander (0.88). Spikelet samples were harvested at 48 h post-inoculation; metabolites were extracted and analysed using an LC-ESI-LTQ-Orbitrap (Thermo Fisher, Waltham, MA, USA). The output was imported to an XCMS 1.12.1 platform, the peaks were deconvoluted and the adducts were sieved. Of the 1826 peaks retained, a t-test identified 496 metabolites with significant treatment effects. Among these, 194 were resistance-related (RR) constitutive metabolites, whose abundance was higher in resistant mock-inoculated than in susceptible mock-inoculated genotypes. Fifty metabolites were assigned putative names on the basis of accurate mass, fragmentation pattern and number of carbons in the formula. The RR metabolites mainly belonged to phenylpropanoid, flavonoid, fatty acid and terpenoid metabolic pathways. Selected RR metabolites were assayed in vitro for antifungal activity on the basis of fungal biomass production. The application of these RR metabolites as potential biomarkers for screening and the potential of mass spectrometry-based metabolomics for the identification of gene functions are discussed.