SEARCH

SEARCH BY CITATION

References

  • 1
    Hagenbuch B, Meier PJ. Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J Clin Invest 1994; 93: 132631.
  • 2
    Hagenbuch B, Dawson P. The sodium bile salt cotransport family SLC10. Pflugers Arch-Eur J Physiol 2004; 447: 56670.
  • 3
    Ananthanarayanan M, Ng OC, Boyer JL, Suchy FJ. Characterization of cloned rat liver Na(+)-bile acid cotransporter using peptide and fusion protein antibodies. Am J Physiol 1994; 267: G63743.
  • 4
    Stieger B, Hagenbuch B, Landmann L, Hochli M, Schroeder A, Meier PJ. In-situ localization of the hepatocytic Na+ taurocholate cotransporting polypeptide in rat-liver. Gastroenterology 1994; 107: 17817.
  • 5
    Meier PJ, Eckhardt U, Schroeder A, Hagenbuch B, Stieger B. Substrate specificity of sinusoidal bile acid and organic anion uptake systems in rat and human liver. Hepatology 1997; 26: 166777.
  • 6
    Schroeder A, Eckhardt U, Stieger B, et al. Substrate specificity of the rat liver Na+-bile salt cotransporter in Xenopus laevis oocytes and in CHO cells. Am J Physiol Gastrointest Liver Physiol 1998; 37: G3705.
  • 7
    Mikkaichi T, Suzuki T, Tanemoto M, Ito S, Abe T. The organic anion transporter (OATP) family. Drug Metab Pharmacokinet 2004; 19: 1719.
  • 8
    Gerloff T, Stieger B, Hagenbuch B, et al. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem 1998; 273: 1004650.
  • 9
    Borst P, Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem 2002; 71: 53792.
  • 10
    Stieger B, Meier Y, Meier PJ. The bile salt export pump. Pflugers Arch-Eur J Physiol 2007; 453: 61120.
  • 11
    Zelcer N, Saeki T, Bot I, Kuil A, Borst P. Transport of bile acids in multidrug-resistance-protein 3-overexpressing cells co-transfected with the ileal Na+-dependent bile-acid transporter. Biochem J 2003; 369: 2330.
  • 12
    Zelcer N, Reid G, Wielinga P, et al. Steroid and bile acid conjugates are substrates of human multidrug-resistance protein (MRP) 4 (ATP-binding cassette C4). Biochem J 2003; 371: 3617.
  • 13
    Dawson PA, Hubbert M, Haywood J, et al. The heteromeric organic solute transporter alpha-beta, ost alpha-ost beta, is an ileal basolateral bile acid transporter. J Biol Chem 2005; 280: 69608.
  • 14
    Zollner G, Fickert P, Silbert D, et al. Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis. J Hepatol 2003; 38: 71727.
  • 15
    Keitel V, Burdelski M, Warskulat U, et al. Expression and localization of hepatobiliary transport proteins in progressive familial intrahepatic cholestasis. Hepatology 2005; 41: 116072.
  • 16
    Boyer JL, Trauner M, Mennone A, et al. Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents. Am J Physiol Gastrointest Liver Physiol 2006; 290: G112430.
  • 17
    Shneider BL, Dawson PA, Christie DM, Hardikar W, Wong MH, Suchy FJ. Cloning and molecular characterization of the ontogeny of a rat ileal sodium-dependent bile-acid transporter. J Clin Invest 1995; 95: 74554.
  • 18
    Craddock AL, Love MW, Daniel RW, et al. Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. Am J Physiol Gastrointest Liver Physiol 1998; 37: G15769.
  • 19
    Strautnieks SS, Bull LN, Knisely AS, et al. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet 1998; 20: 2338.
  • 20
    Jansen PL, Strautnieks SS, Jacquemin E, et al. Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis. Gastroenterology 1999; 117: 13709.
  • 21
    Van Mil SWC, Van Der Woerd WL, Van Der Brugge G, et al. Benign recurrent intrahepatic cholestasis type 2 is caused by mutations in ABCB11. Gastroenterology 2004; 127: 37984.
  • 22
    Crawford AR, Smith AJ, Hatch VC, Oude Elferink RP, Borst P, Crawford JM. Hepatic secretion of phospholipid vesicles in the mouse critically depends on mdr2 or MDR3 P-glycoprotein expression. Visualization by electron microscopy. J Clin Invest 1997; 100: 25627.
  • 23
    Smit JJ, Schinkel AH, Oude Elferink RP, et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 1993; 75: 45162.
  • 24
    Deleuze JF, Jacquemin E, Dubuisson C, et al. Defect of multidrug-resistance 3 gene expression in a subtype of progressive familial intrahepatic cholestasis. Hepatology 1996; 23: 9048.
  • 25
    De Vree JM, Jacquemin E, Sturm E, et al. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc Natl Acad Sci U S A 1998; 95: 2827.
  • 26
    Bull LN, Carlton VE, Stricker NL, et al. Genetic and morphological findings in progressive familial intrahepatic cholestasis (Byler disease [PFIC-1] and Byler syndrome): evidence for heterogeneity. Hepatology 1997; 26: 15564.
  • 27
    Bull LN, Van Eijk MJ, Pawlikowska L, et al. A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nat Genet 1998; 18: 21924.
  • 28
    Paulusma CC, Oude Elferink RP. The type 4 subfamily of P-type ATPases, putative aminophospholipid translocases with a role in human disease. Biochim Biophys Acta 2005; 1741: 1124.
  • 29
    Wong MH, Oelkers P, Dawson PA. Identification of a mutation in the ileal sodium-dependent bile acid transporter gene that abolishes transport activity. J Biol Chem 1995; 270: 2722834.
  • 30
    Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 2003; 72: 13774.
  • 31
    Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 2006; 47: 24159.
  • 32
    Myant NB, Mitropoulos KA. Cholesterol 7alpha-hydroxylase. J Lipid Res 1977; 18: 13553.
  • 33
    Cali JJ, Russell DW. Characterization of human sterol 27-hydroxylase. A mitochondrial cytochrome P-450 that catalyzes multiple oxidation reaction in bile acid biosynthesis. J Biol Chem 1991; 266: 77748.
  • 34
    Toll A, Wikvall K, Sudjana-Sugiaman E, Kondo KH, Bjorkhem I. 7 alpha hydroxylation of 25-hydroxycholesterol in liver microsomes. Evidence that the enzyme involved is different from cholesterol 7 alpha-hydroxylase. Eur J Biochem 1994; 224: 30916.
  • 35
    Schwarz M, Wright AC, Davis DL, Nazer H, Bjorkhem I, Russell DW. The bile acid synthetic gene 3 beta-hydroxy-delta(5)-C-27-steroid oxidoreductase is mutated in progressive intrahepatic cholestasis. J Clin Invest 2000; 106: 117584.
  • 36
    Gafvels M, Olin M, Chowdhary BP, et al. Structure and chromosomal assignment of the sterol 12alpha-hydroxylase gene (CYP8B1) in human and mouse: eukaryotic cytochrome P-450 gene devoid of introns. Genomics 1999; 56: 18496.
  • 37
    Zhu Y, Fillenwarth MJ, Crabb D, Lumeng L, Lin RC. Identification of the 37-kd rat liver protein that forms an acetaldehyde adduct in vivo as delta 4-3-ketosteroid 5 beta-reductase. Hepatology 1996; 23: 11522.
  • 38
    Usui E, Okuda K, Kato Y, Noshiro M. Rat hepatic 3 alpha-hydroxysteroid dehydrogenase: expression of cDNA and physiological function in bile acid biosynthetic pathway. J Biochem (Tokyo) 1994; 115: 2307.
  • 39
    Falany CN, Xie X, Wheeler JB, et al. Molecular cloning and expression of rat liver bile acid CoA ligase. J Lipid Res 2002; 43: 206271.
  • 40
    Cuebas DA, Phillips C, Schmitz W, Conzelmann E, Novikov DK. The role of alpha-methylacyl-CoA racemase in bile acid synthesis. Biochem J 2002; 363: 8017.
  • 41
    Baumgart E, Vanhooren JC, Fransen M, et al. Molecular characterization of the human peroxisomal branched-chain acyl-CoA oxidase: cDNA cloning, chromosomal assignment, tissue distribution, and evidence for the absence of the protein in Zellweger syndrome. Proc Natl Acad Sci U S A 1996; 93: 1374853.
  • 42
    Kurosawa T, Sato M, Yoshimura T, Jiang LL, Hashimoto T, Tohma M. Stereospecific formation of (24R,25R)-3 alpha,7 alpha,12 alpha,24-tetrahydroxy-5 beta-cholestan-26-oic acid catalyzed with a peroxisomal bifunctional D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase. Biol Pharm Bull 1997; 20: 2957.
  • 43
    Seedorf U, Assmann G. Cloning, expression, and nucleotide sequence of rat liver sterol carrier protein 2 cDNAs. J Biol Chem 1991; 266: 6306.
  • 44
    Falany CN, Johnson MR, Barnes S, Diasio RB. Glycine and taurine conjugation of bile-acids by a single enzyme - molecular-cloning and expression of human liver bile-acid Coa-amino acid N-acyltransferase. J Biol Chem 1994; 269: 193759.
  • 45
    Visser WF, Van Roermund CWT, Ijlst L, Waterham HR, Wanders RJA. Demonstration of bile acid transport across the mammalian peroxisomal membrane. Biochem Biophys Res Commun 2007; 357: 33540.
  • 46
    Pellicoro A, Van Den Heuvel FAJ, Geuken M, Moshage H, Jansen PLM, Faber KN. Human and rat bile acid-CoA: amino acid N-acyltransferase are liver-specific peroxisomal enzymes: implications for intracellular bile salt transport. Hepatology 2007; 45: 3408.
  • 47
    Barbanto E, Batta AK, Salen G, et al. High serum and urinary unconjugated bile acid concentrations are associated with homozygous mutation in bile acid coenzyme A:amino acid N-acyltransferase (BAAT). Gastroenterology 2003; 124: A60.
  • 48
    Princen HMG, Post SM, Twisk J. Regulation of bile acid biosynthesis. Curr Pharm Des 1997; 3: 5984.
  • 49
    Bjorkhem I, Lutjohann D, Breuer O, Sakinis A, Wennmalm A. Importance of a novel oxidative mechanism for elimination of brain cholesterol – turnover of cholesterol and 24(S)-hydroxycholesterol in rat brain as measured with O-18(2) techniques in vivo and in vitro. J Biol Chem 1997; 272: 3017884.
  • 50
    Lund EG, Guileyardo JM, Russell DW. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci U S A 1999; 96: 723843.
  • 51
    Heverin M, Bogdanovic N, Lutjohann D, et al. Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer’s disease. J Lipid Res 2004; 45: 18693.
  • 52
    Pullinger CR, Eng C, Salen G, et al. Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest 2002; 110: 10917.
  • 53
    Ishibashi S, Schwarz M, Frykman PK, Herz J, Russell DW. Disruption of cholesterol 7 alpha-hydroxylase gene in mice: 1. Postnatal lethality reversed by bile acid and vitamin supplementation. J Biol Chem 1996; 271: 1801723.
  • 54
    Bjorkhem I, Leitersdorf E. Sterol 27-hydroxylase deficiency: a rare cause of xanthomas in normocholesterolemic humans. Trends Endocrinol Metab 2000; 11: 1803.
  • 55
    Setchell KDR, Schwarz M, O’Connell NC, et al. Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7 alpha-hydroxylase gene causes severe neonatal liver disease. J Clin Invest 1998; 102: 1690703.
  • 56
    Clayton PT, Leonard JV, Lawson AM, et al. Familial giant-cell hepatitis associated with synthesis of 3-beta, 7-alpha-dihydroxy-5-cholenoic and 3-beta, 7-alpha, 12-alpha-trihydroxy-5-cholenoic acids. J Clin Invest 1987; 79: 10318.
  • 57
    Ichimiya H, Nazer H, Gunasekaran T, Clayton P, Sjovall J. Treatment of chronic liver-disease caused by 3-beta-hydroxy-delta-5-c27-steroid dehydrogenase-deficiency with chenodeoxycholic acid. Arch Dis Child 1990; 65: 11214.
  • 58
    Witzleben CL, Piccoli DA, Setchell K. A new category of causes of intrahepatic cholestasis. Pediatr Pathol 1992; 12: 26974.
  • 59
    Horslen SP, Lawson AM, Malone M, Clayton PT. 3-Beta-hydroxy-delta-5-C27-steroid dehydrogenase-deficiency – effect of chenodeoxycholic acid therapy on liver histology. J Inherit Metab Dis 1992; 15: 3846.
  • 60
    Jacquemin E, Setchell KDR, Oconnell NC, et al. A new cause of progressive intrahepatic cholestasis – 3-beta-hydroxy-C-27-steroid dehydrogenase/isomerase deficiency. J Pediatr 1994; 125: 37984.
  • 61
    Akobeng AK, Clayton PT, Miller V, Super M, Thomas AG. An inborn error of bile acid synthesis (3 beta-hydroxy-delta(5)-C-27-steroid dehydrogenase deficiency) presenting as malabsorption leading to rickets. Arch Dis Child 1999; 80: 4635.
  • 62
    Setchell KD, Suchy FJ, Welsh MB, Zimmer-Nechemias L, Heubi J, Balistreri WF. Delta 4-3-oxosteroid 5 beta-reductase deficiency described in identical twins with neonatal hepatitis. A new inborn error in bile acid synthesis. J Clin Invest 1988; 82: 214857.
  • 63
    Shneider BL, Setchell KD, Whitington PF, Neilson KA, Suchy FJ. Delta 4-3-oxosteroid 5 beta-reductase deficiency causing neonatal liver failure and hemochromatosis. J Pediatr 1994; 124: 2348.
  • 64
    Ferdinandusse S, Denis S, Clayton PT, et al. Mutations in the gene encoding peroxisomal alpha-methylacyl-CoA racemase cause adult-onset sensory motor neuropathy. Nat Genet 2000; 24: 18891.
  • 65
    Ferdinandusse S, Overmars H, Denis S, Waterham HR, Wanders RJA, Vreken P. Plasma analysis of di- and trihydroxycholestanoic acid diastereoisomers in peroxisomal alpha-methylacyl-CoA racemase deficiency. J Lipid Res 2001; 42: 13741.
  • 66
    Ferdinandusse S, Van Grunsven EG, Oostheim W, et al. Reinvestigation of peroxisomal 3-ketoacyl-CoA thiolase deficiency: identification of the true defect at the level of D-bifunctional protein. Am J Hum Genet 2002; 70: 158993.
  • 67
    Carlton VEH, Harris BZ, Puffenberger EG, et al. Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat Genet 2003; 34: 916.
  • 68
    Depreter M, Espeel M, Roels F. Human peroxisomal disorders. Microsc Res Tech 2003; 61: 20323.
  • 69
    Zelent A, Krust A, Petkovich M, Kastner P, Chambon P. Cloning of murine alpha and beta retinoic acid receptors and a novel receptor gamma predominantly expressed in skin. Nature 1989; 339: 7147.
  • 70
    Leid M, Kastner P, Lyons R, et al. Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell 1992; 68: 37795.
  • 71
    Green S, Wahli W. Peroxisome proliferator-activated receptors: finding the orphan a home. Mol Cell Endocrinol 1994; 100: 14953.
  • 72
    Forman BM, Goode E, Chen J, et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 1995; 81: 68793.
  • 73
    Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids. Science 1999; 284: 13625.
  • 74
    Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999; 284: 13658.
  • 75
    Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 1999; 3: 54353.
  • 76
    Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem 2001; 276: 2885765.
  • 77
    Plass JRM, Mol O, Heegsma J, et al. Farnesoid X receptor and bile salts are involved in transcriptional regulation of the gene encoding the human bile salt export pump. Hepatology 2002; 35: 58996.
  • 78
    Lee H, Zhang YQ, Lee FY, Nelson SF, Gonzalez FJ, Edwards PA. FXR regulates organic solute transporters alpha and beta in the adrenal gland, kidney, and intestine. J Lipid Res 2006; 47: 20114.
  • 79
    Landrier JF, Eloranta JJ, Vavricka SR, Kullak-Ublick GA. The nuclear receptor for bile acids, FXR, transactivates human organic solute transporter-alpha and -beta genes. Am J Physiol Gastrointest Liver Physiol 2006; 290: G47685.
  • 80
    Frankenberg T, Rao A, Chen F, Haywood J, Shneider BL, Dawson PA. Regulation of the mouse organic solute transporter alpha-beta, Ostalpha-Ostbeta, by bile acids. Am J Physiol Gastrointest Liver Physiol 2006; 290: G91222.
  • 81
    Denson LA, Sturm E, Echevarria W, et al. The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology 2001; 121: 1407.
  • 82
    Denson LA, Auld KL, Schiek DS, McClure MH, Mangelsdorf DJ, Karpen SJ. The gene promoters for two critical hepatobiliary transporters, NTCP and MRP2, are coordinately induced by retinoids and suppressed by IL-1 beta and bile acids via RXR: RAR response elements. Hepatology 1999; 30: 305A.
  • 83
    Neimark E, Chen F, Li XP, Shneider BL. Bile acid-induced negative feedback regulation of the human lleal bile acid transporter. Hepatology 2004; 40: 14956.
  • 84
    Chiang JYL, Kimmel R, Stroup D. Regulation of cholesterol 7 alpha-hydroxylase gene (CYP7A1) transcription by the liver orphan receptor (LXR alpha). Gene 2001; 262: 25765.
  • 85
    Xie W, Radominska-Pandya A, Shi Y, et al. An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc Natl Acad Sci U S A 2001; 98: 337580.
  • 86
    Makishima M, Lu TT, Xie W, et al. Vitamin D receptor as an intestinal bile acid sensor. Science 2002; 296: 13136.
  • 87
    Lee FY, Lee H, Hubbert ML, Edwards PA, Zhang Y. FXR, a multipurpose nuclear receptor. Trends Biochem Sci 2006; 31: 57280.
  • 88
    Rippin SJ, Hagenbuch B, Meier PJ, Stieger B. Cholestatic expression pattern of sinusoidal and canalicular organic anion transport systems in primary cultured rat hepatocytes. Hepatology 2001; 33: 77682.
  • 89
    Dranoff JA, McClure M, Burgstahler AD, et al. Short-term regulation of bile acid uptake by microfilament-dependent translocation of rat ntcp to the plasma membrane. Hepatology 1999; 30: 2239.
  • 90
    Xia XF, Lu XH, Shentu S, Merikhi A, LeSage G. Regulation of apical bile acid transporter (ASBT) activity by intracellular to membrane translocation is dependent on a cAMP- and p38-dependent phosphorylation of ASBT. Gastroenterology 2004; 126: A674.
  • 91
    Suchy FJ, Ananthanarayanan M. Bile salt excretory pump: biology and pathobiology. J Pediatr Gastroenterol Nutr 2006; 43: S106.
  • 92
    Misra S, Varticovski L, Arias IM. Mechanisms by which cAMP increases bile acid secretion in rat liver and canalicular membrane vesicles. Am J Physiol Gastrointest Liver Physiol 2003; 285: G31624.
  • 93
    Stieger B, Fattinger K, Madon J, Kullak-Ublick GA, Meier PJ. Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology 2000; 118: 42230.
  • 94
    Fattinger K, Funk C, Pantze M, et al. The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions. Clin Pharmacol Ther 2001; 69: 22331.
  • 95
    Kullak-Ublick GA, Stieger B, Meier PJ. Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 2004; 126: 32242.
  • 96
    Lang C, Meier Y, Stieger B, et al. Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury. Pharmacogenet Genomics 2007; 17: 4760.
  • 97
    Elferink MG, Olinga P, Draaisma AL, et al. LPS-induced downregulation of MRP2 and BSEP in human liver is due to a posttranscriptional process. Am J Physiol Gastrointest Liver Physiol 2004; 287: G100816.