• 1
    Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 2001; 81: 103164.
  • 2
    Marteau P. Probiotics, prebiotics, synbiotics: ecological treatment for inflammatory bowel disease? Gut 2006; 55: 16923.
  • 3
    Le Leu RK, Brown IL, Hu Y, et al. Effect of dietary resistant starch and protein on colonic fermentation and intestinal tumourigenesis in rats. Carcinogenesis 2007; 28: 2405.
  • 4
    Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 1990; 70: 56790.
  • 5
    Wachtershauser A, Stein J. Rationale for the luminal provision of butyrate in intestinal diseases. Eur J Nutr 2000; 39: 16471.
  • 6
    Cummings JH, Rombeau JL, Sakata T. Physiological and Clinical Aspects of Short Chain Fatty Acids. Cambridge: Cambridge University Press, 1995.
  • 7
    Fredstrom SB, Lampe JW, Jung HJ, et al. Apparent fiber digestibility and fecal short-chain fatty acid concentrations with ingestion of two types of dietary fiber. JPEN J Parenter Enteral Nutr 1994; 18: 149.
  • 8
    Weaver GA, Tangel CT, Krause JA, et al. Acarbose enhances human colonic butyrate production. J Nutr 1997; 127: 71723.
  • 9
    Hallert C, Bjorck I, Nyman M, et al. Increasing fecal butyrate in ulcerative colitis patients by diet: controlled pilot study. Inflamm Bowel Dis 2003; 9: 11621.
  • 10
    Lewis SJ, Heaton KW. Increasing butyrate concentration in the distal colon by accelerating intestinal transit. Gut 1997; 41: 24551.
  • 11
    Gostner A, Blaut M, Schaffer V, et al. Effect of isomalt consumption on faecal microflora and colonic metabolism in healthy volunteers. Br J Nutr 2006; 95: 4050.
  • 12
    Hylla S, Gostner A, Dusel G, et al. Effects of resistant starch on the colon in healthy volunteers: possible implications for cancer prevention. Am J Clin Nutr 1998; 67: 13642.
  • 13
    Macfarlane GT, Gibson GR, Cummings JH. Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol 1992; 72: 5764.
  • 14
    Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987; 28: 12217.
  • 15
    Mitchell BL, Lawson MJ, Davies M, et al. Volatile fatty acids in the human intestine: studies in surgical patients. Nutr Res 1985; 5: 108992.
  • 16
    Velazquez OC, Lederer HM, Rombeau JL. Butyrate and the colonocyte. Production, absorption, metabolism, and therapeutic implications. Adv Exp Med Biol 1997; 427: 12334.
  • 17
    Kawamata K, Hayashi H, Suzuki Y. Propionate absorption associated with bicarbonate secretion in vitro in the mouse cecum. Pflugers Arch 2007; 454: 25362.
  • 18
    McNeil NI, Cummings JH, James WP. Rectal absorption of short chain fatty acids in the absence of chloride. Gut 1979; 20: 4003.
  • 19
    Cuff M, Dyer J, Jones M, et al. The human colonic monocarboxylate transporter isoform 1: its potential importance to colonic tissue homeostasis. Gastroenterology 2005; 128: 67686.
  • 20
    Gupta N, Martin PM, Prasad PD, et al. SLC5A8 (SMCT1)-mediated transport of butyrate forms the basis for the tumor suppressive function of the transporter. Life Sci 2006; 78: 241925.
  • 21
    Krishnan S, Ramakrishna BS, Binder HJ. Stimulation of sodium chloride absorption from secreting rat colon by short-chain fatty acids. Dig Dis Sci 1999; 44: 192430.
  • 22
    Ramakrishna BS, Venkataraman S, Srinivasan P, et al. Amylase-resistant starch plus oral rehydration solution for cholera. N Engl J Med 2000; 342: 30813.
  • 23
    Dankert J, Zijlstra JB, Wolthers BG. Volatile fatty acids in human peripheral and portal blood: quantitative determination vacuum distillation and gas chromatography. Clin Chim Acta 1981; 110: 3017.
  • 24
    Matsumoto N, Riley S, Fraser D, et al. Butyrate modulates TGF-beta1 generation and function: potential renal benefit for Acacia(sen) SUPERGUM (gum arabic)? Kidney Int 2006; 69: 25765.
  • 25
    Wolever TM, Chiasson JL. Acarbose raises serum butyrate in human subjects with impaired glucose tolerance. Br J Nutr 2000; 84: 5761.
  • 26
    Wolever TM, Josse RG, Leiter LA, et al. Time of day and glucose tolerance status affect serum short-chain fatty acid concentrations in humans. Metabolism 1997; 46: 80511.
  • 27
    Wolever TM, Fernandes J, Rao AV. Serum acetate:propionate ratio is related to serum cholesterol in men but not women. J Nutr 1996; 126: 27907.
  • 28
    Rose DJ, DeMeo MT, Keshavarzian A, et al. Influence of dietary fiber on inflammatory bowel disease and colon cancer: importance of fermentation pattern. Nutr Rev 2007; 65: 5162.
  • 29
    Nilsson U, Nyman M. Short-chain fatty acid formation in the hindgut of rats fed oligosaccharides varying in monomeric composition, degree of polymerisation and solubility. Br J Nutr 2005; 94: 70513.
  • 30
    Morrison DJ, Mackay WG, Edwards CA, et al. Butyrate production from oligofructose fermentation by the human faecal flora: what is the contribution of extracellular acetate and lactate? Br J Nutr 2006; 96: 5707.
  • 31
    Van De Wiele T, Boon N, Possemiers S, et al. Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J Appl Microbiol 2007; 102: 45260.
  • 32
    Nordgaard I, Hove H, Clausen MR, et al. Colonic production of butyrate in patients with previous colonic cancer during long-term treatment with dietary fibre (Plantago ovata seeds). Scand J Gastroenterol 1996; 31: 101120.
  • 33
    Araki Y, Fujiyama Y, Andoh A, et al. The dietary combination of germinated barley foodstuff plus Clostridium butyricum suppresses the dextran sulfate sodium-induced experimental colitis in rats. Scand J Gastroenterol 2000; 35: 10607.
  • 34
    Stewart ML, Slavin JL. Molecular weight of guar gum affects short-chain fatty acid profile in model intestinal fermentation. Mol Nutr Food Res 2006; 50: 9716.
  • 35
    Nilsson U, Johansson M, Nilsson A, et al. Dietary supplementation with beta-glucan enriched oat bran increases faecal concentration of carboxylic acids in healthy subjects. Eur J Clin Nutr 2007; epub ahead of print.
  • 36
    Kameue C, Tsukahara T, Ushida K. Alteration of gene expression in the colon of colorectal cancer model rat by dietary sodium gluconate. Biosci Biotechnol Biochem 2006; 70: 60614.
  • 37
    Bajka BH, Topping DL, Cobiac L, et al. Butyrylated starch is less susceptible to enzymic hydrolysis and increases large-bowel butyrate more than high-amylose maize starch in the rat. Br J Nutr 2006; 96: 27682.
  • 38
    Tungland BC, Meyer D. Nondigestible oligo- and polysaccharides (dietary fiber): their physiology and role in human health and food. Compr Rev Food Sci Food Saf 2002; 3: 90109.
  • 39
    Conley BA, Egorin MJ, Tait N, et al. Phase I study of the orally administered butyrate prodrug, tributyrin, in patients with solid tumors. Clin Cancer Res 1998; 4: 62934.
  • 40
    Roda A, Simoni P, Magliulo M, et al. A new oral formulation for the release of sodium butyrate in the ileo-cecal region and colon. World J Gastroenterol 2007; 13: 107984.
  • 41
    Vernia P, Monteleone G, Grandinetti G, et al. Combined oral sodium butyrate and mesalazine treatment compared to oral mesalazine alone in ulcerative colitis: randomized, double-blind, placebo-controlled pilot study. Dig Dis Sci 2000; 45: 97681.
  • 42
    Ibekwe VC, Liu F, Fadda HM, et al. An investigation into the in vivo performance variability of pH responsive polymers for ileo-colonic drug delivery using gamma scintigraphy in humans. J Pharm Sci 2006; 95: 27606.
  • 43
    Ohkawara S, Furuya H, Nagashima K, et al. Oral administration of butyrivibrio fibrisolvens, a butyrate-producing bacterium, decreases the formation of aberrant crypt foci in the colon and rectum of mice. J Nutr 2005; 135: 287883.
  • 44
    Araki Y, Andoh A, Takizawa J, et al. Clostridium butyricum, a probiotic derivative, suppresses dextran sulfate sodium-induced experimental colitis in ats. Int J Mol Med 2004; 13: 57780.
  • 45
    Scheppach W, Sommer H, Kirchner T, et al. Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 1992; 103: 516.
  • 46
    Breuer RI, Soergel KH, Lashner BA, et al. Short chain fatty acid rectal irrigation for left-sided ulcerative colitis: a randomised, placebo controlled trial. Gut 1997; 40: 48591.
  • 47
    Bingham SA, Day NE, Luben R, et al. Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study. Lancet 2003; 361: 1496501.
  • 48
    Burkitt DP. Epidemiology of cancer of the colon and rectum. Cancer 1971; 28: 313.
  • 49
    Cassidy A, Bingham SA, Cummings JH. Starch intake and colorectal cancer risk: an international comparison. Br J Cancer 1994; 69: 93742.
  • 50
    Howe GR, Benito E, Castelleto R, et al. Dietary intake of fiber and decreased risk of cancers of the colon and rectum: evidence from the combined analysis of 13 case-control studies. J Natl Cancer Inst 1992; 84: 188796.
  • 51
    Kim YI. AGA technical review: impact of dietary fiber on colon cancer occurrence. Gastroenterology 2000; 118: 123557.
  • 52
    Park Y, Hunter DJ, Spiegelman D, et al. Dietary fiber intake and risk of colorectal cancer: a pooled analysis of prospective cohort studies. JAMA 2005; 294: 284957.
  • 53
    Trock B, Lanza E, Greenwald P. Dietary fiber, vegetables, and colon cancer: critical review and meta-analyses of the epidemiologic evidence. J Natl Cancer Inst 1990; 82: 65061.
  • 54
    Clausen MR, Bonnen H, Mortensen PB. Colonic fermentation of dietary fibre to short chain fatty acids in patients with adenomatous polyps and colonic cancer. Gut 1991; 32: 9238.
  • 55
    McIntyre A, Gibson PR, Young GP. Butyrate production from dietary fibre and protection against large bowel cancer in a rat model. Gut 1993; 34: 38691.
  • 56
    Baron JA. Dietary fiber and colorectal cancer: an ongoing saga. JAMA 2005; 294: 29046.
  • 57
    Lambert DW, Wood IS, Ellis A, et al. Molecular changes in the expression of human colonic nutrient transporters during the transition from normality to malignancy. Br J Cancer 2002; 86: 12629.
  • 58
    Li H, Myeroff L, Smiraglia D, et al. SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers. Proc Natl Acad Sci U S A 2003; 100: 84127.
  • 59
    Paroder V, Spencer SR, Paroder M, et al. Na(+)/monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer: molecular characterization of SMCT. Proc Natl Acad Sci U S A 2006; 103: 72705.
  • 60
    Weaver GA, Krause JA, Miller TL, et al. Short chain fatty acid distributions of enema samples from a sigmoidoscopy population: an association of high acetate and low butyrate ratios with adenomatous polyps and colon cancer. Gut 1988; 29: 153943.
  • 61
    Bauer-Marinovic M, Florian S, Muller-Schmehl K, et al. Dietary resistant starch type 3 prevents tumor induction by 1,2-dimethylhydrazine and alters proliferation, apoptosis and dedifferentiation in rat colon. Carcinogenesis 2006; 27: 184959.
  • 62
    D’Argenio G, Cosenza V, Delle Cave M, et al. Butyrate enemas in experimental colitis and protection against large bowel cancer in a rat model. Gastroenterology 1996; 110: 172734.
  • 63
    Kameue C, Tsukahara T, Yamada K, et al. Dietary sodium gluconate protects rats from large bowel cancer by stimulating butyrate production. J Nutr 2004; 134: 9404.
  • 64
    Medina V, Afonso JJ, Alvarez-Arguelles H, et al. Sodium butyrate inhibits carcinoma development in a 1,2-dimethylhydrazine-induced rat colon cancer. JPEN J Parenter Enteral Nutr 1998; 22: 147.
  • 65
    Reddy BS. Prevention of colon cancer by pre- and probiotics: evidence from laboratory studies. Br J Nutr 1998; 80: S21923.
  • 66
    Takahashi T, Satou M, Watanabe N, et al. Inhibitory effect of microfibril wheat bran on azoxymethane-induced colon carcinogenesis in CF1 mice. Cancer Lett 1999; 141: 13946.
  • 67
    Wong CS, Sengupta S, Tjandra JJ, et al. The influence of specific luminal factors on the colonic epithelium: high-dose butyrate and physical changes suppress early carcinogenic events in rats. Dis Colon Rectum 2005; 48: 54959.
  • 68
    Chirakkal H, Leech SH, Brookes KE, et al. Upregulation of BAK by butyrate in the colon is associated with increased Sp3 binding. Oncogene 2006; 25: 7192200.
  • 69
    Hinnebusch BF, Meng S, Wu JT, et al. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J Nutr 2002; 132: 10127.
  • 70
    Comalada M, Bailon E, De Haro O, et al. The effects of short-chain fatty acids on colon epithelial proliferation and survival depend on the cellular phenotype. J Cancer Res Clin Oncol 2006; 132: 48797.
  • 71
    Hodin RA, Meng S, Archer S, et al. Cellular growth state differentially regulates enterocyte gene expression in butyrate-treated HT-29 cells. Cell Growth Differ 1996; 7: 64753.
  • 72
    Mentschel J, Claus R. Increased butyrate formation in the pig colon by feeding raw potato starch leads to a reduction of colonocyte apoptosis and a shift to the stem cell compartment. Metabolism 2003; 52: 14005.
  • 73
    Mortensen FV, Langkilde NC, Joergensen JC, et al. Short-chain fatty acids stimulate mucosal cell proliferation in the closed human rectum after Hartmann’s procedure. Int J Colorectal Dis 1999; 14: 1504.
  • 74
    Scheppach W, Bartram P, Richter A, et al. Effect of short-chain fatty acids on the human colonic mucosa in vitro. JPEN J Parenter Enteral Nutr 1992; 16: 438.
  • 75
    Scheppach W, Weiler F. The butyrate story: old wine in new bottles? Curr Opin Clin Nutr Metab Care 2004; 7: 5637.
  • 76
    Scalmati A, Lipkin M. Proliferation and differentiation biomarkers in colorectal mucosa and their application to chemoprevention studies. Environ Health Perspect 1993; 99: 16973.
  • 77
    Biasco G, Paganelli GM, Miglioli M, et al. Rectal cell proliferation and colon cancer risk in ulcerative colitis. Cancer Res 1990; 50: 11569.
  • 78
    Gibson PR, Rosella O, Wilson AJ, et al. Colonic epithelial cell activation and the paradoxical effects of butyrate. Carcinogenesis 1999; 20: 53944.
  • 79
    Sengupta S, Muir JG, Gibson PR. Does butyrate protect from colorectal cancer? J Gastroenterol Hepatol 2006; 21 (1 Pt 2): 20918.
  • 80
    Daly K, Shirazi-Beechey SP. Microarray analysis of butyrate regulated genes in colonic epithelial cells. DNA Cell Biol 2006; 25: 4962.
  • 81
    Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr 2003; 133 (Suppl. 7): 2485S93S.
  • 82
    Gibson PR. The intracellular target of butyrate’s actions: HDAC or HDON’T? Gut 2000; 46: 4478.
  • 83
    Dashwood RH, Myzak MC, Ho E. Dietary HDAC inhibitors: time to rethink weak ligands in cancer chemoprevention? Carcinogenesis 2006; 27: 3449.
  • 84
    Berger DH. Plasmin/plasminogen system in colorectal cancer. World J Surg 2002; 26: 76771.
  • 85
    Gibson PR, Rosella O, Rosella G, et al. Butyrate is a potent inhibitor of urokinase secretion by normal colonic epithelium in vitro. Gastroenterology 1994; 107: 4109.
  • 86
    Mortensen FV, Jorgensen B, Christiansen HM, et al. Short-chain fatty acid enemas stimulate plasminogen activator inhibitor-1 after abdominal aortic graft surgery: a double-blinded, placebo-controlled study. Thromb Res 2000; 98: 3616.
  • 87
    Gibson PR, Kilias D, Rosella O, et al. Effect of topical butyrate on rectal epithelial kinetics and mucosal enzyme activities. Clin Sci (Lond) 1998; 94: 6716.
  • 88
    Ebert MN, Klinder A, Peters WH, et al. Expression of glutathione S-transferases (GSTs) in human colon cells and inducibility of GSTM2 by butyrate. Carcinogenesis 2003; 24: 163744.
  • 89
    Andoh A, Shimada M, Araki Y, et al. Sodium butyrate enhances complement-mediated cell injury via down-regulation of decay-accelerating factor expression in colonic cancer cells. Cancer Immunol Immunother 2002; 50: 66372.
  • 90
    Rodriguez-Salvador J, Armas-Pineda C, Perezpena-Diazconti M, et al. Effect of sodium butyrate on pro-matrix metalloproteinase-9 and -2 differential secretion in pediatric tumors and cell lines. J Exp Clin Cancer Res 2005; 24: 46373.
  • 91
    Zeng H, Briske-Anderson M. Prolonged butyrate treatment inhibits the migration and invasion potential of HT1080 tumor cells. J Nutr 2005; 135: 2915.
  • 92
    Zgouras D, Wachtershauser A, Frings D, et al. Butyrate impairs intestinal tumor cell-induced angiogenesis by inhibiting HIF-1alpha nuclear translocation. Biochem Biophys Res Commun 2003; 300: 8328.
  • 93
    Calder PC, Kew S. The immune system: a target for functional foods? Br J Nutr 2002; 88 (Suppl. 2): S16577.
  • 94
    Neuman MG. Immune dysfunction in inflammatory bowel disease. Transl Res 2007; 149: 17386.
  • 95
    Roediger WE. The starved colon – diminished mucosal nutrition, diminished absorption, and colitis. Dis Colon Rectum 1990; 33: 85862.
  • 96
    Harig JM, Soergel KH, Komorowski RA, et al. Treatment of diversion colitis with short-chain-fatty acid irrigation. N Engl J Med 1989; 320: 238.
  • 97
    Sands BE. Inflammatory bowel disease: past, present, and future. J Gastroenterol 2007; 42: 1625.
  • 98
    Roediger WE, Heyworth M, Willoughby P, et al. Luminal ions and short chain fatty acids as markers of functional activity of the mucosa in ulcerative colitis. J Clin Pathol 1982; 35: 3236.
  • 99
    Vernia P, Gnaedinger A, Hauck W, et al. Organic anions and the diarrhea of inflammatory bowel disease. Dig Dis Sci 1988; 33: 13538.
  • 100
    Takaishi H, Matsuki T, Nakazawa A, et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int J Med Microbiol 2007; epub ahead of print.
  • 101
    Den Hond E, Hiele M, Evenepoel P, et al. In vivo butyrate metabolism and colonic permeability in extensive ulcerative colitis. Gastroenterology 1998; 115: 58490.
  • 102
    Kato K, Ishii Y, Mizuno S, et al. Usefulness of rectally administering [1-13C]-butyrate for breath test in patients with active and quiescent ulcerative colitis. Scand J Gastroenterol 2007; 42: 20714.
  • 103
    Simpson EJ, Chapman MA, Dawson J, et al. In vivo measurement of colonic butyrate metabolism in patients with quiescent ulcerative colitis. Gut 2000; 46: 737.
  • 104
    Nancey S, Moussata D, Graber I, et al. Tumor necrosis factor alpha reduces butyrate oxidation in vitro in human colonic mucosa: a link from inflammatory process to mucosal damage? Inflamm Bowel Dis 2005; 11: 55966.
  • 105
    Roediger WE, Moore J, Babidge W. Colonic sulfide in pathogenesis and treatment of ulcerative colitis. Dig Dis Sci 1997; 42: 15719.
  • 106
    Picton R, Eggo MC, Langman MJ, et al. Impaired detoxication of hydrogen sulfide in ulcerative colitis? Dig Dis Sci 2007; 52: 3738.
  • 107
    Moore J, Babidge W, Millard S, et al. Colonic luminal hydrogen sulfide is not elevated in ulcerative colitis. Dig Dis Sci 1998; 43: 1625.
  • 108
    Pitcher MC, Beatty ER, Cummings JH. The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis. Gut 2000; 46: 6472.
  • 109
    Andoh A, Bamba T, Sasaki M. Physiological and anti-inflammatory roles of dietary fiber and butyrate in intestinal functions. JPEN J Parenter Enteral Nutr 1999; 23 (Suppl. 5): S703.
  • 110
    Butzner JD, Parmar R, Bell CJ, et al. Butyrate enema therapy stimulates mucosal repair in experimental colitis in the rat. Gut 1996; 38: 56873.
  • 111
    Segain JP, Raingeard de la Bletiere D, Bourreille A, et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut 2000; 47: 397403.
  • 112
    Song M, Xia B, Li J. Effects of topical treatment of sodium butyrate and 5-aminosalicylic acid on expression of trefoil factor 3, interleukin 1beta, and nuclear factor kappaB in trinitrobenzene sulphonic acid induced colitis in rats. Postgrad Med J 2006; 82: 1305.
  • 113
    Al-Sabbagh R, Sinicrope FA, Sellin JH, et al. Evaluation of short-chain fatty acid enemas: treatment of radiation proctitis. Am J Gastroenterol 1996; 91: 18146.
  • 114
    Guillemot F, Colombel JF, Neut C, et al. Treatment of diversion colitis by short-chain fatty acids. Prospective and double-blind study. Dis Colon Rectum 1991; 34: 8614.
  • 115
    Luhrs H, Gerke T, Muller JG, et al. Butyrate inhibits NF-kappaB activation in lamina propria macrophages of patients with ulcerative colitis. Scand J Gastroenterol 2002; 37: 45866.
  • 116
    Mortensen FV, Hessov I, Birke H, et al. Microcirculatory and trophic effects of short chain fatty acids in the human rectum after Hartmann’s procedure. Br J Surg 1991; 78: 120811.
  • 117
    Pinto A, Fidalgo P, Cravo M, et al. Short chain fatty acids are effective in short-term treatment of chronic radiation proctitis: randomized, double-blind, controlled trial. Dis Colon Rectum 1999; 42: 78895; discussion 795–6.
  • 118
    Scheppach W. Treatment of distal ulcerative colitis with short-chain fatty acid enemas. A placebo-controlled trial. German-Austrian SCFA Study Group. Dig Dis Sci 1996; 41: 22549.
  • 119
    Scheppach W, Muller JG, Boxberger F, et al. Histological changes in the colonic mucosa following irrigation with short-chain fatty acids. Eur J Gastroenterol Hepatol 1997; 9: 1638.
  • 120
    Senagore AJ, MacKeigan JM, Scheider M, et al. Short-chain fatty acid enemas: a cost-effective alternative in the treatment of nonspecific proctosigmoiditis. Dis Colon Rectum 1992; 35: 9237.
  • 121
    Steinhart AH, Hiruki T, Brzezinski A, et al. Treatment of left-sided ulcerative colitis with butyrate enemas: a controlled trial. Aliment Pharmacol Ther 1996; 10: 72936.
  • 122
    Talley NA, Chen F, King D, et al. Short-chain fatty acids in the treatment of radiation proctitis: a randomized, double-blind, placebo-controlled, cross-over pilot trial. Dis Colon Rectum 1997; 40: 104650.
  • 123
    Tonelli F, Dolara P, Batignani G, et al. Effects of short chain fatty acids on mucosal proliferation and inflammation of ileal pouches in patients with ulcerative colitis and familial polyposis. Dis Colon Rectum 1995; 38: 9748.
  • 124
    Vernia P, Annese V, Bresci G, et al. Topical butyrate improves efficacy of 5-ASA in refractory distal ulcerative colitis: results of a multicentre trial. Eur J Clin Invest 2003; 33: 2448.
  • 125
    Vernia P, Fracasso PL, Casale V, et al. Topical butyrate for acute radiation proctitis: randomised, crossover trial. Lancet 2000; 356: 12325.
  • 126
    Vernia P, Marcheggiano A, Caprilli R, et al. Short-chain fatty acid topical treatment in distal ulcerative colitis. Aliment Pharmacol Ther 1995; 9: 30913.
  • 127
    Di Sabatino A, Morera R, Ciccocioppo R, et al. Oral butyrate for mildly to moderately active Crohn’s disease. Aliment Pharmacol Ther 2005; 22: 78994.
  • 128
    Hanai H, Kanauchi O, Mitsuyama K, et al. Germinated barley foodstuff prolongs remission in patients with ulcerative colitis. Int J Mol Med 2004; 13: 6437.
  • 129
    Kanauchi O, Mitsuyama K, Homma T, et al. Treatment of ulcerative colitis patients by long-term administration of germinated barley foodstuff: multi-center open trial. Int J Mol Med 2003; 12: 7014.
  • 130
    Kanauchi O, Suga T, Tochihara M, et al. Treatment of ulcerative colitis by feeding with germinated barley foodstuff: first report of a multicenter open control trial. J Gastroenterol 2002; 37 (Suppl. 14): 6772.
  • 131
    Casellas F, Borruel N, Torrejon A, et al. Oral oligofructose-enriched inulin supplementation in acute ulcerative colitis is well tolerated and associated with lowered faecal calprotectin. Aliment Pharmacol Ther 2007; 25: 10617.
  • 132
    Welters CF, Heineman E, Thunnissen FB, et al. Effect of dietary inulin supplementation on inflammation of pouch mucosa in patients with an ileal pouch-anal anastomosis. Dis Colon Rectum 2002; 45: 6217.
  • 133
    Fernandez-Banares F, Hinojosa J, Sanchez-Lombrana JL, et al. Randomized clinical trial of Plantago ovata seeds (dietary fiber) as compared with mesalamine in maintaining remission in ulcerative colitis. Spanish Group for the Study of Crohn’s Disease and Ulcerative Colitis (GETECCU). Am J Gastroenterol 1999; 94: 42733.
  • 134
    Hallert C, Kaldma M, Petersson BG. Ispaghula husk may relieve gastrointestinal symptoms in ulcerative colitis in remission. Scand J Gastroenterol 1991; 26: 74750.
  • 135
    Inan MS, Rasoulpour RJ, Yin L, et al. The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology 2000; 118: 72434.
  • 136
    Andoh A, Fujiyama Y, Hata K, et al. Counter-regulatory effect of sodium butyrate on tumour necrosis factor-alpha (TNF-alpha)-induced complement C3 and factor B biosynthesis in human intestinal epithelial cells. Clin Exp Immunol 1999; 118: 239.
  • 137
    Place RF, Noonan EJ, Giardina C. HDAC inhibition prevents NF-kappa B activation by suppressing proteasome activity: down-regulation of proteasome subunit expression stabilizes I kappa B alpha. Biochem Pharmacol 2005; 70: 394406.
  • 138
    Jobin C, Sartor RB. The I kappa B/NF-kappa B system: a key determinant of mucosalinflammation and protection. Am J Physiol Cell Physiol 2000; 278: C45162.
  • 139
    Klampfer L, Huang J, Sasazuki T, et al. Inhibition of interferon gamma signaling by the short chain fatty acid butyrate. Mol Cancer Res 2003; 1: 85562.
  • 140
    Stempelj M, Kedinger M, Augenlicht L, et al. The essential role of the JAK/STAT1 signaling pathway in the expression of INOS in intestinal epithelial cells and its regulation by butyrate. J Biol Chem 2007; 282: 9797804.
  • 141
    Kinoshita M, Suzuki Y, Saito Y. Butyrate reduces colonic paracellular permeability by enhancing PPARgamma activation. Biochem Biophys Res Commun 2002; 293: 82731.
  • 142
    Schwab M, Reynders V, Loitsch S, et al. Involvement of different nuclear hormone receptors in butyrate-mediated inhibition of inducible NFkappaB signalling. Mol Immunol 2007; 44: 362532.
  • 143
    Schwab M, Reynders V, Ulrich S, et al. PPARgamma is a key target of butyrate-induced caspase-3 activation in the colorectal cancer cell line Caco-2. Apoptosis 2006; 11: 180111.
  • 144
    Ulrich S, Wachtershauser A, Loitsch S, et al. Activation of PPARgamma is not involved in butyrate-induced epithelial cell differentiation. Exp Cell Res 2005; 310: 196204.
  • 145
    Wachtershauser A, Loitsch SM, Stein J. PPAR-gamma is selectively upregulated in Caco-2 cells by butyrate. Biochem Biophys Res Commun 2000; 272: 3805.
  • 146
    Dubuquoy L, Rousseaux C, Thuru X, et al. PPAR{gamma} as a new therapeutic target in inflammatory bowel diseases. Gut 2006; 55: 13419.
  • 147
    Dubuquoy L, Jansson EA, Deeb S, et al. Impaired expression of peroxisome proliferator-activated receptor gamma in ulcerative colitis. Gastroenterology 2003; 124: 126576.
  • 148
    Karaki SI, Tazoe H, Hayashi H, et al. Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J Mol Histol 2007; epub ahead of print.
  • 149
    Covington DK, Briscoe CA, Brown AJ, et al. The G-protein-coupled receptor 40 family (GPR40-GPR43) and its role in nutrient sensing. Biochem Soc Trans 2006; 34 (Pt 5): 7703.
  • 150
    Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003; 278: 113129.
  • 151
    Karaki S, Mitsui R, Hayashi H, et al. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res 2006; 324: 35360.
  • 152
    Rezaie A, Parker RD, Abdollahi M. Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause? Dig Dis Sci 2007; 52: 201521.
  • 153
    Skrzydlewska E, Sulkowski S, Koda M, et al. Lipid peroxidation and antioxidant status in colorectal cancer. World J Gastroenterol 2005; 11: 4036.
  • 154
    Abrahamse SL, Pool-Zobel BL, Rechkemmer G. Potential of short chain fatty acids to modulate the induction of DNA damage and changes in the intracellular calcium concentration by oxidative stress in isolated rat distal colon cells. Carcinogenesis 1999; 20: 62934.
  • 155
    Rosignoli P, Fabiani R, De Bartolomeo A, et al. Protective activity of butyrate on hydrogen peroxide-induced DNA damage in isolated human colonocytes and HT29 tumour cells. Carcinogenesis 2001; 22: 167580.
  • 156
    Toden S, Bird AR, Topping DL, et al. Dose-dependent reduction of dietary protein-induced colonocyte DNA damage by resistant starch in rats correlates more highly with caecal butyrate than with other short chain fatty acids. Cancer Biol Ther 2007; 6: 2538.
  • 157
    Yano S, Tierney DF. Butyrate increases catalase activity and protects rat pulmonary artery smooth muscle cells against hyperoxia. Biochem Biophys Res Commun 1989; 164: 11438.
  • 158
    Deplancke B, Gaskins HR. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr 2001; 73: 1131S41S.
  • 159
    Gendler SJ, Spicer AP. Epithelial mucin genes. Annu Rev Physiol 1995; 57: 60734.
  • 160
    Einerhand AW, Renes IB, Makkink MK, et al. Role of mucins in inflammatory bowel disease: important lessons from experimental models. Eur J Gastroenterol Hepatol 2002; 14: 75765.
  • 161
    Gaudier E, Jarry A, Blottiere HM, et al. Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am J Physiol Gastrointest Liver Physiol 2004; 287: G116874.
  • 162
    Hatayama H, Iwashita J, Kuwajima A, et al. The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T. Biochem Biophys Res Commun 2007; 356: 599603.
  • 163
    Willemsen LE, Koetsier MA, Van Deventer SJ, et al. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut 2003; 52: 14427.
  • 164
    Augenlicht L, Shi L, Mariadason J, et al. Repression of MUC2 gene expression by butyrate, a physiological regulator of intestinal cell maturation. Oncogene 2003; 22: 498392.
  • 165
    Finnie IA, Dwarakanath AD, Taylor BA, et al. Colonic mucin synthesis is increased by sodium butyrate. Gut 1995; 36: 939.
  • 166
    Barcelo A, Claustre J, Moro F, et al. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut 2000; 46: 21824.
  • 167
    Tsukahara T, Iwasaki Y, Nakayama K, et al. Stimulation of butyrate production in the large intestine of weaning piglets by dietary fructooligosaccharides and its influence on the histological variables of the large intestinal mucosa. J Nutr Sci Vitaminol (Tokyo) 2003; 49: 41421.
  • 168
    Meijer HP, Welters CF, Heineman E, et al. Enteral inulin does not affect epithelial gene expression and cell turnover within the ileoanal pouch. Dis Colon Rectum 2000; 43: 142734.
  • 169
    Barrett KE. A new twist on trefoils. Focus on “TFF3 modulates NF-{kappa}B and a novel regulatory molecule of NF-{kappa}B in intestinal epithelial cells via a mechanism distinct from TNF-{alpha}”. Am J Physiol Cell Physiol 2005; 289: C106971.
  • 170
    Thim L. Trefoil peptides: from structure to function. Cell Mol Life Sci 1997; 53: 888903.
  • 171
    Loncar MB, Al-azzeh ED, Sommer PS, et al. Tumour necrosis factor alpha and nuclear factor kappaB inhibit transcription of human TFF3 encoding a gastrointestinal healing peptide. Gut 2003; 52: 1297303.
  • 172
    Lin J, Peng L, Itzkowitz S, et al. Short-chain fatty acid induces intestinal mucosal injury in newborn rats and down-regulates intestinal trefoil factor gene expression in vivo and in vitro. J Pediatr Gastroenterol Nutr 2005; 41: 60711.
  • 173
    Tran CP, Familari M, Parker LM, et al. Short-chain fatty acids inhibit intestinal trefoil factor gene expression in colon cancer cells. Am J Physiol 1998; 275 (1 Pt 1): G8594.
  • 174
    D’Argenio G, Calvani M, Della Valle N, et al. Differential expression of multiple transglutaminases in human colon: impaired keratinocyte transglutaminase expression in ulcerative colitis. Gut 2005; 54: 496502.
  • 175
    D’Argenio G, Cosenza V, Sorrentini I, et al. Butyrate, mesalamine, and factor XIII in experimental colitis in the rat: effects on transglutaminase activity. Gastroenterology 1994; 106: 399404.
  • 176
    Kiehne K, Brunke G, Wegner F, et al. Defensin expression in chronic pouchitis in patients with ulcerative colitis or familial adenomatous polyposis coli. World J Gastroenterol 2006; 12: 105662.
  • 177
    Schauber J, Dorschner RA, Yamasaki K, et al. Control of the innate epithelial antimicrobial response is cell-type specific and dependent on relevant microenvironmental stimuli. Immunology 2006; 118: 50919.
  • 178
    Wehkamp J, Stange EF. A new look at Crohn’s disease: breakdown of the mucosal antibacterial defense. Ann N Y Acad Sci 2006; 1072: 32131.
  • 179
    Schauber J, Svanholm C, Termen S, et al. Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signalling pathways. Gut 2003; 52: 73541.
  • 180
    Arvans DL, Vavricka SR, Ren H, et al. Luminal bacterial flora determines physiological expression of intestinal epithelial cytoprotective heat shock proteins 25 and 72. Am J Physiol Gastrointest Liver Physiol 2005; 288: G696704.
  • 181
    Malago JJ, Koninkx JF, Tooten PC, et al. Anti-inflammatory properties of heat shock protein 70 and butyrate on Salmonella-induced interleukin-8 secretion in enterocyte-like Caco-2 cells. Clin Exp Immunol 2005; 141: 6271.
  • 182
    Ren H, Musch MW, Kojima K, et al. Short-chain fatty acids induce intestinal epithelial heat shock protein 25 expression in rats and IEC 18 cells. Gastroenterology 2001; 121: 6319.
  • 183
    Venkatraman A, Ramakrishna BS, Shaji RV, et al. Amelioration of dextran sulfate colitis by butyrate: role of heat shock protein 70 and NF-kappaB. Am J Physiol Gastrointest Liver Physiol 2003; 285: G17784.
  • 184
    Wilson AJ, Gibson PR. Short-chain fatty acids promote the migration of colonic epithelial cells in vitro. Gastroenterology 1997; 113: 48796.
  • 185
    Walsh SV, Hopkins AM, Nusrat A. Modulation of tight junction structure and function by cytokines. Adv Drug Deliv Rev 2000; 41: 30313.
  • 186
    Poritz LS, Garver KI, Green C, et al. Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. J Surg Res 2007; 140: 129.
  • 187
    Mariadason JM, Barkla DH, Gibson PR. Effect of short-chain fatty acids on paracellular permeability in Caco-2 intestinal epithelium model. Am J Physiol 1997; 272 (4 Pt 1): G70512.
  • 188
    Peng L, He Z, Chen W, et al. Effects of butyrate on intestinal barrier function in a caco-2 cell monolayer model of intestinal barrier. Pediatr Res 2007; 61: 3741.
  • 189
    Bordin M, D’Atri F, Guillemot L, et al. Histone deacetylase inhibitors up-regulate the expression of tight junction proteins. Mol Cancer Res 2004; 2: 692701.
  • 190
    Ohata A, Usami M, Miyoshi M. Short-chain fatty acids alter tight junction permeability in intestinal monolayer cells via lipoxygenase activation. Nutrition 2005; 21: 83847.
  • 191
    Mariadason JM, Kilias D, Catto-Smith A, et al. Effect of butyrate on paracellular permeability in rat distal colonic mucosa ex vivo. J Gastroenterol Hepatol 1999; 14: 8739.
  • 192
    Ten Bruggencate SJ, Bovee-Oudenhoven IM, Lettink-Wissink ML, et al. Dietary fructooligosaccharides increase intestinal permeability in rats. J Nutr 2005; 135: 83742.
  • 193
    Ten Bruggencate SJ, Bovee-Oudenhoven IM, Lettink-Wissink ML, et al. Dietary fructooligosaccharides affect intestinal barrier function in healthy men. J Nutr 2006; 136: 704.
  • 194
    Cherbut C. Motor effects of short-chain fatty acids and lactate in the gastrointestinal tract. Proc Nutr Soc 2003; 62: 959.
  • 195
    Delzenne NM, Cani PD, Daubioul C, et al. Impact of inulin and oligofructose on gastrointestinal peptides. Br J Nutr 2005; 93 (Suppl. 1): S15761.
  • 196
    Gee JM, Johnson IT. Dietary lactitol fermentation increases circulating peptide YY and glucagon-like peptide-1 in rats and humans. Nutrition 2005; 21: 103643.
  • 197
    Cani PD, Neyrinck AM, Maton N, et al. Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like peptide-1. Obes Res 2005; 13: 10007.
  • 198
    Delmee E, Cani PD, Gual G, et al. Relation between colonic proglucagon expression and metabolic response to oligofructose in high fat diet-fed mice. Life Sci 2006; 79: 100713.
  • 199
    Cani PD, Joly E, Horsmans Y, et al. Oligofructose promotes satiety in healthy human: a pilot study. Eur J Clin Nutr 2006; 60: 56772.
  • 200
    Piche T, Des Varannes SB, Sacher-Huvelin S, et al. Colonic fermentation influences lower esophageal sphincter function in gastroesophageal reflux disease. Gastroenterology 2003; 124: 894902.
  • 201
    Zhou J, Hegsted M, McCutcheon KL, et al. Peptide YY and proglucagon mRNA expression patterns and regulation in the gut. Obesity (Silver Spring) 2006; 14: 6839.
  • 202
    Plaisancie P, Dumoulin V, Chayvialle JA, et al. Luminal peptide YY-releasing factors in the isolated vascularly perfused rat colon. J Endocrinol 1996; 151: 4219.
  • 203
    Plaisancie P, Dumoulin V, Chayvialle JA, et al. Luminal glucagon-like peptide-1(7-36) amide-releasing factors in the isolated vascularly perfused rat colon. J Endocrinol 1995; 145: 5216.
  • 204
    Longo WE, Ballantyne GH, Savoca PE, et al. Short-chain fatty acid release of peptide YY in the isolated rabbit distal colon. Scand J Gastroenterol 1991; 26: 4428.
  • 205
    Cherbut C, Ferrier L, Roze C, et al. Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat. Am J Physiol 1998; 275 (6 Pt 1): G141522.
  • 206
    Ropert A, Cherbut C, Roze C, et al. Colonic fermentation and proximal gastric tone in humans. Gastroenterology 1996; 111: 28996.
  • 207
    Bourdu S, Dapoigny M, Chapuy E, et al. Rectal instillation of butyrate provides a novel clinically relevant model of noninflammatory colonic hypersensitivity in rats. Gastroenterology 2005; 128: 19962008.
  • 208
    Tarrerias AL, Millecamps M, Alloui A, et al. Short-chain fatty acid enemas fail to decrease colonic hypersensitivity and inflammation in TNBS-induced colonic inflammation in rats. Pain 2002; 100: 917.
  • 209
    Scheiwiller J, Arrigoni E, Brouns F, et al. Human faecal microbiota develops the ability to degrade type 3 resistant starch during weaning. J Pediatr Gastroenterol Nutr 2006; 43: 58491.
  • 210
    Lin J, Nafday SM, Chauvin SN, et al. Variable effects of short chain fatty acids and lactic acid in inducing intestinal mucosal injury in newborn rats. J Pediatr Gastroenterol Nutr 2002; 35: 54550.
  • 211
    Nafday SM, Chen W, Peng L, et al. Short-chain fatty acids induce colonic mucosal injury in rats with various postnatal ages. Pediatr Res 2005; 57: 2014.