Patterns of growth and nutrient deposition in lake trout (Salvelinus namaycush), brook trout (Salvelinus fontinalis) and their hybrid, F1 splake (Salvelinus namaycush × Salvelinus fontinalis) as a function of water temperature

Authors


Stephen J. Gunther, CIEN Austral, Universidad Austral de Chile, Av. Los Pinos s/n, Balneario de Pelluco, Puerto Montt, Chile (casilla 1327). E-mail: sgunther@uoguelph.ca

Abstract

Several fish species of the genus Salvelinus are used for stocking freshwaters in North and South America and much of Europe but there is little information about their growth and carcass composition. Lake trout (S. namaycush), brook trout (S. fontinalis) and their hybrid F1 splake (S. namaycush × S. fontinalis) (initial body weight ca. 2–4 g) were raised at 6.4, 10.6 and 14.9 °C to examine growth and nutrient deposition as a function of water temperature. In all species, weight gain and feed intake increased significantly with water temperature and feed efficiency was significantly lower at 6.4 than at 10.6 and 14.9 °C. In brook trout, Thermal-unit Growth Coefficient (TGC) growth rate was significantly lower at 6.4 than at 10.6 and 14.9 °C, while in F1 splake TGC was only lower at 6.4 than 10.6 °C. Expressed in terms of relative composition a significant effect of temperature was observed. In all species, moisture content decreased while crude protein, lipid, ash and energy contents increased with increased temperature. Expressed in absolute terms, however, a significant effect of temperature was not observed. In all species carcass contents increased significantly with increased live body weight and were best described by simple linear equations. Gross energy concentration was significantly affected by both water temperature and body weight. These data indicate that the growth of these species is a function of water temperature and, in absolute terms, carcass composition is mainly a function of body weight and not water temperature. Also, such simple linear equations bode well for modification of existing feed requirement and waste outputs models; improving their applicability to these species.

Ancillary