3D seismic technology: the geological ‘Hubble’

Authors


Mads Huuse, 3DLab, School of Earth, Ocean and Planetary Sciences, Cardiff University, Cardiff CF10 3YE, Wales, UK. E-mail: m.huuse@earth.cf.ac.uk

Abstract

The proliferation of three-dimensional (3D) seismic technology is one of the most exciting developments in the Earth Sciences over the past century. 3D reflection seismic data provide interpreters with the ability to map structures and stratigraphic features in 3D detail to a resolution of a few tens of metres over thousands of square kilometres. It is a geological ‘Hubble’, whose resolving power has already yielded some fascinating (and surprising) insights and will continue to provide a major stimulus for research into geological processes and products for many decades to come. Academic and other research institutions have a major role to play in the use of this data by exploiting the enormous volume of geological information contained in 3D seismic surveys. This paper reviews some of the recent advances in basin analysis made using the medium of 3D seismic data, focusing on the fields of structural and sedimentary geology, fluid–rock interactions and igneous geology. It is noted that the increased resolution of the 3D seismic method provided the essential catalyst necessary to stimulate novel observations and discover new geological structures such as mud diapir feeders, km-long gas blow-out pipes, giant pockmarks and sandstone intrusions, and to capture the spatial variability of diagenetic fronts. The UKs first impact crater was also discovered using 3D seismic data. The potential for future developments in this field of geophysical interpretation is considerable, and we anticipate that new discoveries will be made in many years to come.

Ancillary