Get access

Fluid dynamics and subsurface sediment mobilization processes: an overview from Southeast Caribbean

Authors


Éric Deville, IFP, 1-4, av. de Bois-Préau, 92 852 Rueil-Malmaison, France. E-mail: eric.deville@ifp.fr

ABSTRACT

This paper discusses the origin and the dynamics of subsurface sediment mobilization processes in tectonically mobile regions and shale-rich environment. This is illustrated by the example of Trinidad and the south of the Barbados prism. In this area of the southeast Caribbean, geophysical acquisitions have spectacularly shown the widespread development of sediment mobilization features in the interference area between the southern part of the Barbados prism and the active turbidite system of the Orinoco. Numerous mud volcanoes are especially developed along ramp anticline crests through hydraulic fracture systems. The area also exhibits trends of structures that correspond to massive uplifts of well-preserved turbidite and hemipelagic sediments that cut up the surrounding sediments. Some of these structures are complicated by the development of collapse structures, calderas and superimposed mud volcanoes. The mobilized sediments expelled by the mud volcanoes are not only liquefied argillaceous but also fine sandy material from deep horizons, and various shallower formations pierced by the mud conduits. Both in the Barbados prism and in Trinidad, the expelled mud is rich in thin, angular and mechanically damaged quartz grains, which are probably cataclastic flows issued from sheared and collapsed deep sandy reservoirs. The exotic clasts and breccias result mostly from hydraulic fracturing. In Trinidad, the gas phase is mainly deep thermogenic methane associated with hydrocarbon generation at depth. Subsurface sediment mobilization notably differs from salt mobilization by the role taken by the fluid dynamics that control overpressured shale mobilization and induce sediment liquefaction. A reaction chain of several deformation processes develops around the conduits. Massive sedimentary uplift corresponds to large movements of stratified solid levels, possibly due to the tectonic inversion of pre-existing mud volcano systems. All these phenomena are controlled by the development of overpressure at depth. No evidence for piercing shale diapirs has been observed in the area studied.

Get access to the full text of this article

Ancillary