• 1
    Sandborn WJ. Therapy for Crohn's disease. Curr Opin Gastroenterol 2000; 16: 31823.
  • 2
    Hanauer SB. Medical therapy for ulcerative colitis. Curr Opin Gastroenterol 2000; 16: 3248.
  • 3
    Sandborn WJ. Steroid-dependent Crohn's disease. Can J Gastroenterol 2000; 14 (Suppl. C): 17C22C.
  • 4
    Feagan BG. Maintenance therapy for inflammatory bowel disease. Am J Gastroenterol 2003; 98: S6S17.
  • 5
    Belaiche J, Desager JP, Horsmans Y, Louis E. Therapeutic drug monitoring of azathioprine and 6-mercaptopurine metabolites in Crohn disease. Scand J Gastroenterol 2001; 36: 716.
  • 6
    Elion GB. Symposium on immunosuppressive drugs. Biochemistry and pharmacology of purine analogues. Fed Proc 1967; 26: 898904.
  • 7
    Lennard L, Lilleyman JS, Van Loon J, Weinshilboum RM. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet 1990; 336: 2259.
  • 8
    Hill DL, Bennett LL Jr. Purification and properties of 5-phosphoribosyl pyrophosphate amidotransferase from adenocarcinoma 755 cells. Biochemistry 1969; 8: 12230.
  • 9
    Tay BS, Lilley RM, Murray AW, Atkinson MR. Inhibition of phosphoribosyl pyrophosphate amidotransferase from Ehrlich ascites-tumour cells by thiopurine nucleotides. Biochem Pharmacol 1969; 18: 9368.
  • 10
    Bennett LL Jr, Allan PW. Formation and significance of 6-methylthiopurine ribonucleotide as a metabolite of 6-mercaptopurine. Cancer Res 1971; 31: 1528.
  • 11
    Bokkerink JP, Stet EH, De Abreu RA, Damen FJ, Hulscher TW, Bakker MA, Van Baal JA. 6-Mercaptopurine: cytotoxicity and biochemical pharmacology in human malignant T-lymphoblasts. Biochem Pharmacol 1993; 45: 145563.
  • 12
    Atreya I, Neurath MF. Thiopurines in inflammatory bowel disease—recent insights. Inflamm Bowel Dis Monit 2006; 7: 505.
  • 13
    Thomas CW, Myhre GM, Tschumper R, Sreekumar R, Jelinek D, McKean DJ, Lipsky JJ, Sandborn WJ, Egan LJ. Selective inhibition of inflammatory gene expression in activated T lymphocytes: a mechanism of immune suppression by thiopurines. J Pharmacol Exp Ther 2005; 312: 53745.
  • 14
    Marinaki AM, Ansari A, Duley JA, Arenas M, Sumi S, Lewis CM, El Shobowale-Bakre M, Escuredo E, Fairbanks LD, Sanderson JD. Adverse drug reactions to azathioprine therapy are associated with polymorphism in the gene encoding inosine triphosphate pyrophosphatase (ITPase). Pharmacogenetics 2004; 14: 1817.
  • 15
    Marinaki AM, Duley JA, Arenas M, Ansari A, Sumi S, Lewis CM, Shobowale-Bakre M, Fairbanks LD, Sanderson J. Mutation in the ITPA gene predicts intolerance to azathioprine. Nucleosides Nucleotides Nucl Acids 2004; 23: 13937.
  • 16
    Zelinkova Z, Derijks LJ, Stokkers PC, Vogels EW, Van Kampen AH, Curvers WL, Cohn D, Van Deventer SJ, Hommes DW. Inosine triphosphate pyrophosphatase and thiopurine s-methyltransferase genotypes relationship to azathioprine-induced myelosuppression. Clin Gastroenterol Hepatol 2006; 4: 449.
  • 17
    Gearry RB, Roberts RL, Barclay ML, Kennedy MA. Lack of association between the ITPA 94C>A polymorphism and adverse effects from azathioprine. Pharmacogenetics 2004; 14: 77981.
  • 18
    Jackson RC, Weber G, Morris HP. IMP dehydrogenase, an enzyme linked with proliferation and malignancy. Nature 1975; 256: 3313.
  • 19
    Weber G. Biochemical strategy of cancer cells and the design of chemotherapy: G. H. A. Clowes Memorial Lecture. Cancer Res 1983; 43: 346692.
  • 20
    Natsumeda Y, Ohno S, Kawasaki H, Konno Y, Weber G, Suzuki K. Two distinct cDNAs for human IMP dehydrogenase. J Biol Chem 1990; 265: 52925.
  • 21
    Gu JJ, Kaiser-Rogers K, Rao K, Mitchell BS. Assignment of the human type I IMP dehydrogenase gene (IMPDH1) to chromosome 7q31.3-q32. Genomics 1994; 24: 17981.
  • 22
    Glesne D, Collart F, Varkony T, Drabkin H, Huberman E. Chromosomal localization and structure of the human type II IMP dehydrogenase gene (IMPDH2). Genomics 1993; 16: 2747.
  • 23
    Kost-Alimova MV, Glesne DA, Huberman E, Zelenin AV. Assignment1 of inosine′-monophosphate dehydrogenase type 2 (IMPDH2) to human chromosome band 3p21.2 by in situ hybridization. Cytogenet Cell Genet 1998; 82: 1456.
  • 24
    Senda M, Natsumeda Y. Tissue-differential expression of two distinct genes for human IMP dehydrogenase (E.C. Life Sci 1994; 54: 191726.
  • 25
    Collart FR, Chubb CB, Mirkin BL, Huberman E. Increased inosine-5′-phosphate dehydrogenase gene expression in solid tumor tissues and tumor cell lines. Cancer Res 1992; 52: 58268.
  • 26
    Zimmermann AG, Gu JJ, Laliberté J, Mitchell BS. Inosine-5′-monophosphate dehydrogenase: regulation of expression and role in cellular proliferation and T lymphocyte activation. Prog Nucl Acid Res Mol Biol 1998; 61: 181209.
  • 27
    Kiguchi K, Collart FR, Henning-Chubb C, Huberman E. Induction of cell differentiation in melanoma cells by inhibitors of IMP dehydrogenase: altered patterns of IMP dehydrogenase expression and activity. Cell Growth Differ 1990; 1: 25970.
  • 28
    Natsumeda Y, Carr SF. Human type I and II IMP dehydrogenases as drug targets. Ann NY Acad Sci 1993; 696: 8893.
  • 29
    Walmsley RS, Ayres RC, Pounder RE, Allan RN. A simple clinical colitis activity index. Gut 1998; 43: 2932.
  • 30
    Harvey RF, Bradshaw JM. A simple index of Crohn's-disease activity. Lancet 1980; 1: 514.
  • 31
    Glander P, Braun KP, Hambach P, Bauer S, Mai I, Roots I, Waiser J, Fritsche L, Neumayer HH, Budde K. Non-radioactive determination of inosine 5′-monophosphate dehydro-genase (IMPDH) in peripheral mononuclear cells. Clin Biochem 2001; 34: 5439.
  • 32
    Pettersson B, Almer S, Albertioni F, Soderhall S, Peterson C. Differences between children and adults in thiopurine methyltransferase activity and metabolite formation during thiopurine therapy: possible role of concomitant methotrexate. Ther Drug Monit 2002; 24: 3518.
  • 33
    Lennard L, Singleton HJ. High-performance liquid chromatographic assay of the methyl and nucleotide metabolites of 6-mercaptopurine: quantitation of red blood cell 6-thioguanine nucleotide, 6-thioinosinic acid and 6-methylmercaptopurine metabolites in a single sample. J Chromatogr 1992; 583: 8390.
  • 34
    Marsh S, King CR, Ahluwalia R, McLeod HL. Distribution of ITPA P32T alleles in multiple world populations. J Hum Genet 2004; 49: 57981.
  • 35
    Lindqvist M, Haglund S, Almer S, Peterson C, Taipalensuu J, Hertervig E, Lyrenas E, Soderkvist P. Identification of two novel sequence variants affecting thiopurine methyltransferase enzyme activity. Pharmacogenetics 2004; 14: 2615.
  • 36
    Sandborn WJ. A review of immune modifier therapy for inflammatory bowel disease: azathioprine, 6-mercaptopurine, cyclosporine, and methotrexate. Am J Gastroenterol 1996; 91: 42333.
  • 37
    Hindorf U, Peterson C, Almer S. Assessment of thiopurine methyltransferase and metabolite formation during thiopurine therapy: results from a large Swedish patient population. Ther Drug Monit 2004; 26: 6738.
  • 38
    Roberts RL, Gearry RB, Barclay ML, Kennedy MA. IMPDH1 promoter mutations in a patient exhibiting azathioprine resistance. Pharmacogenomics 2006; Epub ahead of print. doi:10.1038/sj.tpj.6500421.
  • 39
    Van Loon JA, Weinshilboum RM. Thiopurine methyltransferase biochemical genetics: human lymphocyte activity. Biochem Genet 1982; 20: 63758.
  • 40
    Szumlanski CL, Honchel R, Scott MC, Weinshilboum RM. Human liver thiopurine methyltransferase pharmacogenetics: biochemical properties, liver–erythrocyte correlation and presence of isozymes. Pharmacogenetics 1992; 2: 14859.
  • 41
    Coulthard SA, Howell C, Robson J, Hall AG. The relationship between thiopurine methyltransferase activity and genotype in blasts from patients with acute leukemia. Blood 1998; 92: 285662.
  • 42
    McLeod HL, Relling MV, Liu Q, Pui CH, Evans WE. Polymorphic thiopurine methyltransferase in erythrocytes is indicative of activity in leukemic blasts from children with acute lymphoblastic leukemia. Blood 1995; 85: 1897902.
  • 43
    Bergan S, Bentdal O, Sodal G, Brun A, Rugstad HE, Stokke O. Patterns of azathioprine metabolites in neutrophils, lymphocytes, reticulocytes, and erythrocytes: relevance to toxicity and monitoring in recipients of renal allografts. Ther Drug Monit 1997; 19: 5029.
  • 44
    Montero C, Duley JA, Fairbanks LD, McBride MB, Micheli V, Cant AJ, Morgan G. Demonstration of induction of erythrocyte inosine monophosphate dehydrogenase activity in Ribavirin-treated patients using a high performance liquid chromatography linked method. Clin Chim Acta 1995; 238: 16978.
  • 45
    Lancaster DL, Patel N, Lennard L, Lilleyman JS. Leucocyte versus erythrocyte thioguanine nucleotide concentrations in children taking thiopurines for acute lymphoblastic leukaemia. Cancer Chemother Pharmacol 2002; 50: 336.
  • 46
    Parks RE Jr, Crabtree GW, Kong CM, Agarwal RP, Agarwal KC, Scholar EM. Incorporation of analog purine nucleosides into the formed elements of human blood: erythrocytes, platelets, and lymphocytes. Ann NY Acad Sci 1975; 255: 41234.
  • 47
    Duley JA, Florin TH. Thiopurine therapies: problems, complexities, and progress with monitoring thioguanine nucleotides. Ther Drug Monit 2005; 27: 64754.
  • 48
    Rowland K, Lennard L, Lilleyman JS. In vitro metabolism of 6-mercaptopurine by human liver cytosol. Xenobiotica 1999; 29: 61528.
  • 49
    Rostami-Hodjegan A, Lennard L, Lilleyman JS. The accumulation of mercaptopurine metabolites in age fractionated red blood cells. Br J Clin Pharmacol 1995; 40: 21722.
  • 50
    Cuffari C, Seidman EG, Latour S, Theoret Y. Quantitation of 6-thioguanine in peripheral blood leukocyte DNA in Crohn's disease patients on maintenance 6-mercaptopurine therapy. Can J Physiol Pharmacol 1996; 74: 5805.
  • 51
    Khalil PN, Erb N, Khalil MN, Escherich G, Janka-Schaub GE. Validation and application of a high-performance liquid chromatographic-based assay for determination of the inosine 5′-monophosphate dehydrogenase activity in erythrocytes. J Chromatogr B Anal Technol Biomed Life Sci 2006; 842: 17.
  • 52
    Liliemark J, Pettersson B, Engberg B, Lafolie P, Masquelier M, Peterson C. On the paradoxically concentration-dependent metabolism of 6-mercaptopurine in WEHI-3b murine leukemia cells. Cancer Res 1990; 50: 10812.
  • 53
    Dubinsky MC, Yang H, Hassard PV, Seidman EG, Kam LY, Abreu MT, Targan SR, Vasiliauskas EA. 6-MP metabolite profiles provide a biochemical explanation for 6-MP resistance in patients with inflammatory bowel disease. Gastroenterology 2002; 122: 90415.
  • 54
    Lennard L, Lilleyman JS. Individualizing therapy with 6-mercaptopurine and 6-thioguanine related to the thiopurine methyltransferase genetic polymorphism. Ther Drug Monit 1996; 18: 32834.
  • 55
    Shipkova M, Niedmann PD, Armstrong VW, Oellerich M, Wieland E. Determination of thiopurine methyltransferase activity in isolated human erythrocytes does not reflect putative in vivo enzyme inhibition by sulfasalazine. Clin Chem 2004; 50: 43841.
  • 56
    Von Ahsen N, Armstrong VW, Behrens C, Von Tirpitz C, Stallmach A, Herfarth H, Stein J, Bias P, Adler G, Shipkova M, Oellerich M, Kruis W, Reinshagen M. Association of inosine triphosphatase 94C>A and thiopurine S-methyltransferase deficiency with adverse events and study drop-outs under azathioprine therapy in a prospective Crohn disease study. Clin Chem 2005; 51: 22828.
  • 57
    Van Dieren JM, Van Vuuren AJ, Kusters JG, Nieuwenhuis EE, Kuipers EJ, Van Der Woude CJ. ITPA genotyping is not predictive for the development of side effects in AZA treated inflammatory bowel disease patients. Gut 2005; 54: 1664.
  • 58
    Allorge D, Hamdan R, Broly F, Libersa C, Colombel JF. ITPA genotyping test does not improve detection of Crohn's disease patients at risk of azathioprine/6-mercaptopurine induced myelosuppression. Gut 2005; 54: 565.
  • 59
    De Ridder L, Van Dieren JM, Van Deventer HJ, Stokkers PC, Van der Woude JC, Van Vuuren AJ, Benninga MA, Escher JC, Hommes DW. Pharmacogenetics of thiopurine therapy in paediatric IBD patients. Aliment Pharmacol Ther 2006; 23: 113741.
  • 60
    Hindorf U, Lindqvist M, Peterson C, Soderkvist P, Strom M, Hjortswang H, Pousette A, Almer S. Pharmacogenetics during standardised initiation of thiopurine treatment in inflammatory bowel disease. Gut 2006; 55: 142331.
  • 61
    Osterman MT, Kundu R, Lichtenstein GR, Lewis JD. Association of 6-thioguanine nucleotide levels and inflammatory bowel disease activity: a meta-analysis. Gastroenterology 2006; 130: 104753.