SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Meyer UA. Pharmacogenetics and adverse drug reactions. Lancet 2000; 356: 166771.
  • 2
    Wilson JF, Weale ME, Smith AC, Gratrix F, Fletcher B, Thomas MG, Bradman N, Goldstein DB. Population genetic structure of variable drug response. Nat Genet 2001; 29: 2659.
  • 3
    Burroughs VJ, Maxey RW, Levy RA. Racial and ethnic differences in response to medicines: towards individualized pharmaceutical treatment. J Natl Med Assoc 2002; 94: 126.
  • 4
    Weinshilboum R. Inheritance and drug response. N Eng J Med 2003; 348: 52937.
  • 5
    Wrighton SA, Stevens JC. The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol 1992; 22: 121.
  • 6
    Ingelman-Sundberg M. Genetic polymorphism of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functionaldiversity. Pharmaconomics J 2005; 5: 613.
  • 7
    Mizutani T. PM frequencies of major CYPs in Asians and Caucasians. Drug Metab Rev 2003; 35: 99106.
  • 8
    Shen H-W, He MM, Liu H-F, Wrighton SA, Wang L, Guo B, Li C. Comparative metabolic capabilities and inhibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17. Drug Metab Dispos 2007; 35: 1292300.
  • 9
    Wang L, Sun Y, Du F-F, Niu W, Lu T, Kan J-M, Xu F, Yuan K, Qin T, Liu C, Li C. ‘LC-electrolyte effects’ improve the bioanalytical performance of liquid chromatography/tandem mass spectrometric assays in supporting pharmacokinetic study for drug discovery. Rapid Commun Mass Spectrom 2007; 21: 257384.
  • 10
    Li Y-F, Sun Y, Du F-F, Yuan K-H, Li C. Pulse gradient, large-volume injection, high-throughput ultra-performance liquid chromatographic/tandem mass spectrometry bioanalysis for measurement of plasma amrubicin and its metabolite amrubicinol. J Chromatogr A 2008; 1193: 10916.
  • 11
    Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes. J Biol Chem 1964; 230: 23708.
  • 12
    Guengerich FP, Martin MV, Sohl CD, Cheng Q. Measurement of cytochrome P450 and NADPH-cytochrome P450 reductase. Nat Protoc 2009; 4: 124551.
  • 13
    Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007; 39: 17591.
  • 14
    Hart SH, Zhong X-B. P450 oxidoreductase: genetic polymorphisms and implications for drug metabolism and toxicity. Expert Opin Drug Metab Toxicol 2008; 4: 43952.
  • 15
    Yuan R, Madani S, Wei X-X, Reynolds K, Huang S-M. Evaluation of cytochrome P450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions. Drug Metab Dispos 2002; 30: 13119.
  • 16
    Walsky RL, Obach RS. Validated assays for human cytochrome P450 activities. Drug Metab Dispos 2004; 32: 64760.
  • 17
    Williams JA, Ring BJ, Cantrell VE, Jones DR, Ecksten J, Ruterbories K, Hamman MA, Hall SD, Wrighton SA. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos 2002; 30: 88391.
  • 18
    Peat J, Barton B. Medical Statistics: a Guide to Data Analysis and Critical Appraisal. Oxford: Blackwell Publishing, 2005.
  • 19
    Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270: 41423.
  • 20
    Shimada T, Yamazaki H, Guengerich FP. Ethnic-related differences in coumarin 7-hydroxylation activities catalyzed by cytochrome P450 2A6 in liver microsomes of Japanese and Caucasian populations. Xenobiotica 1996; 26: 395403.
  • 21
    Shimada T, Tsumura F, Yamazaki H, Guengerich FP, Inoue K. Characterization of (±)-bufuralol hydroxylation activities in liver microsomes of Japanese and Caucasian subjects genotyped for CYP2D6. Pharmacogenetics 2001; 11: 14356.
  • 22
    Kim RB, Yamazaki H, Chiba K, O'shea D, Minura M, Guengerich FP, Ishizaki T, Shimada T, Wilkinson GR. In vivo and in vitro characterization of CYP2E1 activity in Japanese and Caucasians. J Pharmacol Exp Ther 1996; 279: 411.
  • 23
    Inoue K, Yamazaki H, Shimada T. Characterization of liver microsomal 7-ethoxycoumarin O-deethylation and chlorzoxazone 6-hydroxylation activities in Japanese and Caucasian subjects genotyped for CYP2E1 gene. Arch Toxicol 2000; 74: 37278.
  • 24
    Gunes A, Dahl ML. Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. Pharmacogenomics 2008; 9: 62537.
  • 25
    Ghotbi R, Christensen M, Roh H-K, Ingelman-Sundberg M, Aklillu E, Bertilsson L. Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. Eur J Clin Pharmacol 2007; 63: 53746.
  • 26
    Ou-Yang D-S, Huang S-L, Wang W, Xie H-G, Xu Z-H, Shu Y, Zhou H-H. Phenotypic polymorphism and gender-related differences of CYP1A2 activity in a Chinese population. Br J Clin Pharmacol 2000; 49: 14551.
  • 27
    Carrillo JA, Benitez J. CYP1A2 activity, gender and smoking, as variables influencing the toxicity of caffeine. Br J Clin Pharmacol 1996; 41: 6058.
  • 28
    Malaiyandi V, Sellers EM, Tyndale RF. Implications of CYP2A6 genetic variation for smoking behaviors and nicotine dependence. Clin Pharmacol Ther 2005; 77: 14558.
  • 29
    Nakajima M, Fukami T, Yamanaka H, Higashi E, Sakai H, Yoshida R, Kwon JT, McLeod HL, Yokoi T. Comprehensive evaluation of variability in nicotine metabolism and CYP2A6 polymorphic alleles in four ethnic populations. Clin Pharmacol Ther 2006; 80: 28297.
  • 30
    Nurfadhlina M, Foong K. The LK, Tan SC, Zaki SM, Ismail R. CYP2A6 polymorphisms in Malays, Chinese and Indians. Xenobiotica 2006; 36: 68492.
  • 31
    Xie H-J, Yasar U, Lundgren S, Griskevicius L, Terelius Y, Hassan M, Rane A. Role of polymorphic human CYP2B6 in cyclophosphamide bioactivation. Pharmacogenomics J 2003; 3: 5361.
  • 32
    Klein K, Lang T, Saussele T, Barbosa-Sicard E, Schunck WH, Eichelbaum M, Chwab M, Zanger UM. Genetic variability of CYP2B6 in populations of African and Asian origin: allele frequencies, novel functional variants, and possible implications for anti-HIV therapy with efavirenz. Pharmacogenet Genomics 2005; 15: 86173.
  • 33
    Jinno H, Tanaka-Kagawa T, Ohno A, Makino Y, Matsushima E, Hanioka N, Ando M. Functional characterization of cytochrome P450 2B6 allelic variants. Drug Metab Dispos 2003; 31: 398403.
  • 34
    Ferguson SS, Chen Y-P, LeCluyse EL, Negishi M, Goldstein JA. Human CYP2C8 is transcriptionally regulated by the nuclear receptors constitutive androstane receptor, pregnane X receptor, glucocorticoid receptor, and hepatic nuclear factor 4α. Mol Pharmacol 2005; 68: 74757.
  • 35
    Garcia-Martin E, Martinez C, Ladero JM, Agúndez JAG. Interethinic and intraethnic variability of CYP2C8 and CYP2C9 polymorphisms in healthy individuals. Mol Diag Ther 2006; 10: 2940.
  • 36
    Daily EB, Aquilante CL. Cytochrome P450 2C8 pharmacogenetics: a review of clinical studies. Pharmacogenomics 2009; 20: 1489510.
  • 37
    Bahadur N, Leathart JB, Mutch E, Steimel-Crespi D, Dunn SA, Gilissen R, Houdt JV, Hendrickx J, Mannens G, Bohets H, Williams FM, Armstrong M, Crespi CL, Daly AK. CYP2C8 polymorphisms in Caucasian and their relationship with paclitaxel 6α-hydroxylase activity in human liver microsomes. Biochem Pharmacol 2002; 64: 157989.
  • 38
    Yasar U, Tybring G, Hidestrand M, Oscarson M, Ingelman-Sundberg M, Dahl M-L, Eliasson E. Role of CYP2C9 polymorphism in losartan oxidation. Drug Metab Dispos 2001; 29: 10516.
  • 39
    Kirchheiner J, Tsahuridu M, Jabrane W, Roots I, Brockmőller J. The CYP2C9 polymorphism: from enzyme kinetics to clinical dose recommendations. Personalized Med 2004; 1: 6384.
  • 40
    Yu HC, Chan TY, Critchley JA, Woo KS. Factors determining the maintenance doses of warfarin in Chinese patients. QJM 1996; 89: 12735.
  • 41
    Takahashi H, Kashima T, Nomizo Y, Muramoto N, Shimizu T, Nasu K, Kubota T, Kimura S, Echizen H. Metabolism of warfarin enantiomers in Japanese patients with heart disease having different CYP2C9 and CYP2C19 genotypes. Clin Pharmacol Ther 1998; 63: 51928.
  • 42
    Gu Q, Kong K, Schneede J, Xiao Y-B, Chen L, Zhong Q-J, Wang X-F, Hao J, Chen B-C, Chen J-J. VKORC1-1639G > A, CYP2C9, EPHX1691A > G genotype, body weight, and age are important predictors for warfarin maintenance doses in patients with mechanical heart valve prostheses in southwest China. Eur J Clin Pharmacol 2010; 66: 121727.
  • 43
    Kim K, Johnson JA, Derendorf H. Differences in drug pharmacokinetics between East Asians and Caucasians and the role of genetic polymorphisms. J Clin Pharmacol 2004; 44: 1083105.
  • 44
    Shimizu T, Ochiai H, Åsell F, Shimizu H, Saitoh R, Hama Y, Katada J, Hashimoto M, Matsui H, Taki K, Kaminuma T, Yamamoto M, Aida Y, Ohashi A, Ozawa N. Bioinformatics research on inter-ethnic difference in drug metabolism I. Analysis on frequencies of mutant alleles and poor metabolizer on CYP2D6 and CYP2C19. Drug Metab Pharmacokin 2003; 18: 4870.
  • 45
    Ragia G, Arvanitidis KI, Tavridou A, Manolopoulos VG. Need for reassessment of reported CYP2C19 allele frequencies in various populations in view of CYP2C19*17 discovery: the case of Greece. Pharmacogenomics 2009; 10: 439.
  • 46
    Li-Wan-Po A, Girard T, Farndon P, Cooley C, Lithgow J. Pharmacogenetics of CYP2C19: functional and clinical implications of a new variant CYP2C19*17. Br J Clin Pharmacol 2010; 69: 22230.
  • 47
    Trafalis DT, Panteli ES, Grivas A, Tsigris C, Karamanakos PN. CYP2E1 and risk of chemically mediated cancers. Expert Opin Drug Metab Toxicol 2010; 6: 30719.
  • 48
    Lin JHCY. P induction-mediated drug interactions: in vitro assessment and clinical implications. Pharm Res 2006; 23: 1089116.
  • 49
    Hewitt NJ, Lecluyse EL, Ferguson SS. Induction of hepatic cytochromes P450 enzymes: methods, mechanisms, recommendations, and in vitro-in vivo correlations. Xenobiotica 2007; 37: 1196224.
  • 50
    Wortham M, Czerwinski M, He L, Parkinson A, Wan Y-J. Expression of constitutive androstane receptor, hepatic nuclear factor 4α, and P450 oxidoreductase genes determines interindividual variability in basal expression and activity of a broad scope of xenobiotic metabolism genes in the human liver. Drug Metab Dispos 2007; 35: 170010.