• 1
    Kussmann M, Affolter M, Nagy K, Holst B, Fay LB. Mass spectrometry in nutrition: understanding dietary health effects at the molecular level. Mass Spectrom Rev 2007; 26: 727750.
  • 2
    Espìn JC, Garcìa-Conesa MT, Tomàs-Barberàn FA. Nutraceuticals: facts and fiction. Phytochemistry 2007; 68: 29863008.
  • 3
    Arts IC, Hollman PC. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 2005; 81: (1 Suppl.): 317S325.
  • 4
    Joshipura KJ, Ascherio A, Manson JE, Stampfer MJ, Rimm EB, Speizer FE, Hennekens CH, Spiegelman D, Willett WC. Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA 1999; 282: 12331239.
  • 5
    Patil BS, Jayaprakasha GK, Chidambara Murthy KN, Vikram A. Bioactive compounds: historical perspectives, opportunities, and challenges. J Agric Food Chem 2009; 57: 81428160.
  • 6
    Manach C, Williamson G, Morand C, Scalbert A, Remesy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 2005; 81: (1 Suppl.): 230S242.
  • 7
    Williamson G, Clifford MN. Colonic metabolites of berry polyphenols: The missing link to biological activity? Br J Nutr 2010; 104: (Suppl. 3): S48S66.
  • 8
    U.S.Department of Health and Human Services, Food and Drug Administration (FaDA). Guidance for industry: bioavailability and bioequivalence studies for orally administrated drug products – general considerations. Rockville, MD: Center for Drug Evaluation and Research (CDER), 2003.
  • 9
    Benito P, Miller D. Iron absorption and bioavailability: an updated review. Nutr Res 1998; 18: 581603.
  • 10
    Fernàndez-Garcìa E, Carvajal-Lérida I, Pérez-Gàlvez A. In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutr Res 2009; 29: 751760.
  • 11
    Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004; 79: 727747.
  • 12
    Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr 2000; 130: (8S Suppl.): 2073S2085.
  • 13
    De Roos B, Mavrommatis Y, Brouwer IA. Long-chain n-3 polyunsaturated fatty acids: new insights into mechanisms relating to inflammation and coronary heart disease. Br J Pharmacol 2009; 158: 413428.
  • 14
    Hooper L, Kroon PA, Rimm EB, Cohn JS, Harvey I, Le Cornu KA, Ryder JJ, Hall WL, Cassidy A. Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr 2008; 88: 3850.
  • 15
    Kris-Etherton PM, Hecker KD, Binkoski AE. Polyunsaturated fatty acids and cardiovascular health. Nutr Rev 2004; 62: 414426.
  • 16
    Trikalinos TA, Lee J, Moorthy D, Yu WW, Lau J, Lichtenstein AH, Chung M. Effects of eicosapentanoic acid and docosahexanoic acid on mortality across diverse settings: systematic review and meta-analysis of randomized trials and prospective cohorts. AHRQ Tech Rev 2012; 17: 4.
  • 17
    Vauzour D, Rodriguez-Mateos A, Corona G, Oruna-Concha MJ, Spencer JPE. Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients 2010; 2: 11061131.
  • 18
    Saura-Calixto F, Serrano J, Goñi I. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem 2007; 101: 492501.
  • 19
    Gropper SS, Smith JL (eds). The digestive system: mechanism for nurishing the body. In: Advanced Nutrition and Human Metabolism, 5 edn. Belmont: Wadsworth, 2009; 3362.
  • 20
    Neilson AP, Ferruzzi MG. Influence of formulation and processing on absorption and metabolism of flavan-3-ols from tea and cocoa. Annu Rev Food Sci Technol 2011; 2: 125151.
  • 21
    Garrett DA, Failla ML, Sarama RJ. Development of an in vitro digestion method to assess carotenoid bioavailability from meals. J Agric Food Chem 1999; 47: 43014309.
  • 22
    Iqbal J, Hussain MM. Intestinal lipid absorption. Am J Physiol Endocrinol Metab 2009; 296: E1183E1194.
  • 23
    Niot I, Poirier H, Tran TTT, Besnard P. Intestinal absorption of long-chain fatty acids: evidence and uncertainties. Prog Lipid Res 2009; 48: 101115.
  • 24
    Tang G, Serfaty-Lacrosniere C, Camilo ME, Russell RM. Gastric acidity influences the blood response to a beta-carotene dose in humans. Am J Clin Nutr 1996; 64: 622626.
  • 25
    Mullen W, Edwards CA, Serafini M, Crozier A. Bioavailability of pelargonidin-3-O-glucoside and its metabolites in humans following the ingestion of strawberries with and without cream. J Agric Food Chem 2008; 56: 713719.
  • 26
    Welch IM, Davison PA, Worlding J, Read NW. Effect of ileal infusion of lipid on jejunal motor patterns after a nutrient and nonnutrient meal. Am J Physiol 1988; 255: G800G806.
  • 27
    Welch IM, Cunningham KM, Read NW. Regulation of gastric emptying by ileal nutrients in humans. Gastroenterology 1988; 94: 401404.
  • 28
    Walsh KR, Zhang YC, Vodovotz Y, Schwartz SJ, Failla ML. Stability and bioaccessibility of isoflavones from soy bread during in vitro digestion. J Agric Food Chem 2003; 51: 46034609.
  • 29
    Brown MJ, Ferruzzi MG, Nguyen ML, Cooper DA, Eldridge AL, Schwartz SJ, White WS. Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. Am J Clin Nutr 2004; 80: 396403.
  • 30
    Berry SE, Tydeman EA, Lewis HB, Phalora R, Rosborough J, Picout DR, Ellis PR. Manipulation of lipid bioaccessibility of almond seeds influences postprandial lipemia in healthy human subjects. Am J Clin Nutr 2008; 88: 922929.
  • 31
    Mateo Anson N, van den Berg R, Havenaar R, Bast A, Haenen GRMM. Bioavailability of ferulic acid is determined by its bioaccessibility. J Cereal Sci 2009; 49: 296300.
  • 32
    Anson NM, Aura AM, Selinheimo E, Mattila I, Poutanen K, van den Berg R, Havenaar R, Bast A, Haenen GRMM. Bioprocessing of wheat bran in whole wheat bread increases the bioavailability of phenolic acids in men and exerts antiinflammatory effects ex vivo 1-3. J Nutr 2011; 141: 137143.
  • 33
    Richelle M, Sabatier M, Steiling H, Williamson G. Skin bioavailability of dietary vitamin E, carotenoids, polyphenols, vitamin C, zinc and selenium. Br J Nutr 2006; 96: 227238.
  • 34
    Singh H, Ye A, Horne D. Structuring food emulsions in the gastrointestinal tract to modify lipid digestion. Prog Lipid Res 2009; 48: 92100.
  • 35
    Nawar WW. Lipids. In: Food Chemistry, 3 edn. ed. Fennema OR . New York, NY: Marcel Dekker, 1996; 225319.
  • 36
    Fernández-García E, Carvajal-Lérida I, Jarén-Galán M, Garrido-Fernández J, Pérez-Gálvez A, Hornero-Méndez D. Carotenoid bioavailability from foods: from plant pigments to efficient biological activities. Food Res Int 2012; 46: 438450.
  • 37
    Cansell M, Nacja F, Combe N. Marine lipid-based liposomes increase in vivo FA bioavailability. Lipids 2003; 38: 551559.
  • 38
    Manach C, Donovan JL. Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radic Res 2004; 38: 771785.
  • 39
    Del Rio D, Borges G, Crozier A. Berry flavonoids and phenolics: bioavailability and evidence of protective effects. Br J Nutr 2010; 104: (Suppl. 3): S6790.
  • 40
    Viskupicova J, Ondrejovic M, Sturdík E. Bioavailability and metabolism of flavonoids. J Food Nutr Res 2008; 47: 151162.
  • 41
    Williamson G. The use of flavonoid aglycones in in vitro systems to test biological activities: based on bioavailability data, is this the valid approach? Phytochem Rev 2002; 1: 215222.
  • 42
    Lolito SB, Zhang WJ, Yang CS, Crozier A, Frei B. Metabolic conversion of dietary flavonoids alters their anti-inflammatory and antioxidant properties. Free Radic Biol Med 2011; 51: 454463.
  • 43
    Spencer JPE, Abd El Mohsen MM, Rice-Evans C. Cellular uptake and metabolism of flavonoids and their metabolites: implications for their bioactivity. Arch Biochem Biophys 2004; 423: 148161.
  • 44
    Scholz S, Williamson G. Interactions affecting the bioavailability of dietary polyphenols in vivo. Int J Vitam Nutr Res 2007; 77: 224235.
  • 45
    Appeldoorn MM, Vincken JP, Aura AM, Hollman PCH, Gruppen H. Procyanidin dimers are metabolized by human microbiota with 2-(3,4-dihydroxyphenyl)acetic acid and 5-(3,4-dihydroxyphenyl)-γ- valerolactone as the major metabolites. J Agric Food Chem 2009; 57: 10841092.
  • 46
    Hollman PC, van Trijp JM, Buysman MN, van der Gaag MS, Mengelers MJ, de Vries JH, Katan MB. Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett 1997; 418: 152156.
  • 47
    Hollman PC, Bijsman MN, van Gameren Y, Cnossen EP, de Vries JH, Katan MB. The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radic Res 1999; 31: 569573.
  • 48
    Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 1998; 56: 317333.
  • 49
    Hollman PC, de Vries JH, van Leeuwen SD, Mengelers MJ, Katan MB. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr 1995; 62: 12761282.
  • 50
    Erlund I, Kosonen T, Alfthan G, Maenpaa J, Perttunen K, Kenraali J, Parantainen J, Aro A. Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. Eur J Clin Pharmacol 2000; 56: 545553.
  • 51
    Hollman PCH, Katan MB. Dietary flavonoids: intake, health effects and bioavailability. Food Chem Toxicol 1999; 37: 937942.
  • 52
    Ottaviani JI, Momma TY, Heiss C, Kwik-Uribe C, Schroeter H, Keen CL. The stereochemical configuration of flavanols influences the level and metabolism of flavanols in humans and their biological activity in vivo. Free Radic Biol Med 2011; 50: 237244.
  • 53
    Rusznyàk S, Szent-Györgyi A. Vitamin P: flavonols as vitamins [5]. Nature 1936; 138: 27.
  • 54
    Boileau TWM, Boileau AC, Erdman J. Bioavailability of all-trans and cis-isomers of lycopene. Exp Biol Med 2002; 227: 914919.
  • 55
    Muthyala RS, Ju YH, Sheng S, Williams LD, Doerge DR, Katzenellenbogen BS, Helferich WG, Katzenellenbogen JA. Equol, a natural estrogenic metabolite from soy isoflavones: convenient preparation and resolution of R- and S-equols and their differing binding and biological activity through estrogen receptors alpha and beta. Bioorg Med Chem 2004; 12: 15591567.
  • 56
    Brand W, Shao J, Hoek-Van Den Hil EF, Van Elk KN, Spenkelink B, De Haan LHJ, Rein MJ, Dionisi F, Williamson G, Van Bladeren PJ, Rietjens IMCM. Stereoselective conjugation, transport and bioactivity of S- and R-hesperetin enantiomers in vitro. J Agric Food Chem 2010; 58: 61196125.
  • 57
    Lévèques A, Actis-Goretta L, Rein MJ, Williamson G, Dionisi F, Giuffrida F. UPLC-MS/MS quantification of total hesperetin and hesperetin enantiomers in biological matrices. J Pharm Biomed Anal 2012; 57: 16.
  • 58
    Richelle M, Lambelet P, Rytz A, Tavazzi I, Mermoud AF, Juhel C, Borel P, Bortlik K. The proportion of lycopene isomers in human plasma is modulated by lycopene isomer profile in the meal but not by lycopene preparation. Br J Nutr 2012; 107: 14821488.
  • 59
    Ross AB, Vuong LT, Ruckle J, Synal HA, Schulze-König T, Wertz K, Rümbeli R, Liberman RG, Skipper PL, Tannenbaum SR, Bourgeois A, Guy PA, Enslen M, Nielsen ILF, Kochhar S, Richelle M, Fay LB, Williamson G. Lycopene bioavailability and metabolism in humans: an accelerator mass spectrometry study. Am J Clin Nutr 2011; 93: 12631273.
  • 60
    Brand W, Schutte ME, Williamson G, van Zanden JJ, Cnubben NHP, Groten JP, Van Bladeren PJ, Rietjens IMCM. Flavonoid-mediated inhibition of intestinal ABC transporters may affect the oral bioavailability of drugs, food-borne toxic compounds and bioactive ingredients. Biomed Pharmacother 2006; 60: 508519.
  • 61
    Kerns EH, Di L. Transporters. Drug-like Properties: Concepts, Structure Design and Methods, from ADME to Toxicity Optimization, 1st edn. London: Elsevier, 2008; 103122.
  • 62
    Chow S-C, Liu J-P. Introduction. In: Design and Analysis of Bioavailability and Bioequivalence Studies, 3rd edn. eds Chow S-C , Liu J-P . Boca Raton: Chapman & Hall/CRC, 2009; 311.
  • 63
    Burckhardt BC, Burckhardt G. Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev Physiol Biochem Pharmacol 2003; 146: 95158.
  • 64
    Whitley AC, Sweet DH, Walle T. The dietary polyphenol ellagic acid is a potent inhibitor of hOAT1. Drug Metab Dispos 2005; 33: 10971100.
  • 65
    Itagaki S, Kobayashi Y, Otsuka Y, Kubo S, Kobayashi M, Hirano T, Iseki K. Food-drug interaction between ferrulic acid and nateglinide involving the fluorescein/H+ cotransport system. J Agric Food Chem 2005; 53: 24992502.
  • 66
    Morris ME, Zhang S. Flavonoid-drug interactions: effects of flavonoids on ABC transporters. Life Sci 2006; 78: 21162130.
  • 67
    Sesink ALA, Arts ICW, De Boer VCJ, Breedveld P, Schellens JHM, Hollman PCH, Russel FGM. Breast cancer resistance protein (Bcrp1/Abcg2) limits net intestinal uptake of quercetin in rats by facilitating apical efflux of glucuronides. Mol Pharmacol 2005; 67: 19992006.
  • 68
    Williamson G, Aeberli I, Miguet L, Zhang Z, Sanchez MB, Crespy V, Barron D, Needs P, Kroon PA, Glavinas H, Krajcsi P, Grigorov M. Interaction of positional isomers of quercetin glucuronides with the transporter ABCC2 (cMOAT, MRP2). Drug Metab Dispos 2007; 35: 12621268.
  • 69
    Richelle M, Enslen M, Hager C, Groux M, Tavazzi I, Godin JP, Berger A, Métairon S, Quaile S, Piguet-Welsch C, Sagalowicz L, Green H, Fay LB. Both free and esterified plant sterols reduce cholesterol absorption and the bioavailability of beta-carotene and alfa-tocopherol in normocholesterolemic humans. Am J Clin Nutr 2004; 80: 171177.
  • 70
    Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr 2005; 81: (1 Suppl.): 243S255.
  • 71
    Averina ES, Kutyrev IA. Perspectives on the use of marine and freshwater hydrobiont oils for development of drug delivery systems. Biotechnol Adv 2011; 29: 548557.
  • 72
    Frank J, Lee S, Leonard SW, Atkinson JK, Kamal-Eldin A, Traber MG. Sex differences in the inhibition of α-tocopherol metabolism by a single dose of dietary sesame oil in healthy subjects. Am J Clin Nutr 2008; 87: 17231729.
  • 73
    Becquemont L, Verstuyft C, Kerb R, Brinkmann U, Lebot M, Jaillon P, Funck-Brentano C. Effect of grapefruit juice on digoxin pharmacokinetics in humans. Clin Pharmacol Ther 2001; 70: 311316.
  • 74
    Dresser GK, Bailey DG. The effects of fruit juices on drug disposition: a new model for drug interactions. Eur J Clin Invest 2003; 33: (Suppl. 2): 1016.
  • 75
    Fuhr U. Drug interactions with grapefruit juice. Extent, probable mechanism and clinical relevance. Drug Saf 1998; 18: 251272.
  • 76
    Edwards DJ, Bellevue III FH, Woster PM. Identification of 6′,7′-dihydroxybergamottin, a cytochrome P450 inhibitor, in grapefruit juice. Drug Metab Dispos 1996; 24: 12871290.
  • 77
    He K, Iyer KR, Hayes RN, Sinz MW, Woolf TF, Hollenberg PF. Inactivation of cytochrome P450 3A4 by bergamottin, a component of grapefruit juice. Chem Res Toxicol 1998; 11: 252259.
  • 78
    Hanley MJ, Cancalon P, Widmer WW, Greenblatt DJ. The effect of grapefruit juice on drug disposition. Expert Opin Drug Metab Toxicol 2011; 7: 267286.
  • 79
    Hirunpanich V, Katagi J, Sethabouppha B, Sato H. Demonstration of docosahexaenoic acid as a bioavailability enhancer for CYP3A substrates: in vitro and in vivo evidence using cyclosporin in rats. Drug Metab Dispos 2006; 34: 305310.
  • 80
    Di YM, Li CG, Xue CC, Zhou SF. Clinical drugs that interact with St John's wort and implication in drug development. Curr Pharm Des 2008; 14: 17231742.
  • 81
    Mannel M. Drug interactions with St John's wort : mechanisms and clinical implications. Drug Saf 2004; 27: 773797.
  • 82
    Yang CS, Sang S, Lambert JD, Lee MJ. Bioavailability issues in studying the health effects of plant polyphenolic compounds. Mol Nutr Food Res 2008; 52: (Suppl. 1): S139S151.
  • 83
    Yliperttula M, Urtti A. Nanotechnology for improved drug bioavailability. In: Drug Bioavailability: Estimation of Solubility, Permeability, Absorption and Bioavailability, 2nd edn. eds Van de Waterbeemd H , Testa B . Weinheim: Wiley-VCH, 2009; 597604.
  • 84
    European Food Safety Authoriy. Scientific opinion: guidence to the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. 2011.
  • 85
    Xie X, Tao Q, Zou Y, Zhang F, Guo M, Wang Y, Wang H, Zhou Q, Yu S. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms. J Agric Food Chem 2011; 59: 92809289.
  • 86
    Tzeng CW, Yen FL, Wu TH, Ko HH, Lee CW, Tzeng WS, Lin CC. Enhancement of dissolution and antioxidant activity of kaempferol using a nanoparticle engineering process. J Agric Food Chem 2011; 59: 50735080.
  • 87
    Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol 2007; 595: 105125.
  • 88
    Zhou H, Beevers CS, Huang S. The targets of curcumin. Curr Drug Targets 2011; 12: 332347.
  • 89
    Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm 2007; 4: 807818.
  • 90
    Yu H, Shi K, Liu D, Huang Q. Development of a food-grade organogel with high bioaccessibility and loading of curcuminoids. Food Chem 2012; 131: 4854.
  • 91
    Fang Z, Bhandari B. Encapsulation of polyphenols – A review. Trends Food Sci Tech 2010; 21: 510523.
  • 92
    Fernandez-Garcia E, Rincon F, Perez-Galvez A. Developing an emulsifier system to improve the bioaccessibility of carotenoids. J Agric Food Chem 2008; 56: 1038410390.
  • 93
    Haug IJ, Sagmo LB, Zeiss D, Olsen IC, Draget KI, Seternes T. Bioavailability of EPA and DHA delivered by gelled emulsions and soft gel capsules. Eur J Lipid Sci Tech 2011; 113: 137145.
  • 94
    Higgins S, Carroll YL, O'Brien NM, Morrissey PA. Use of microencapsulated fish oil as a means of increasing n-3 polyunsaturated fatty acid intake. J Hum Nutr Diet 1999; 12: 265271.
  • 95
    Wakil A, MacKenzie G, Diego-Taboada A, Bell JG, Atkin SL. Enhanced bioavailability of eicosapentaenoic acid from fish oil after encapsulation within plant spore exines as microcapsules. Lipids 2010; 45: 645649.
  • 96
    Wallace JMW, McCabe AJ, Robson PJ, Keogh MK, Murray CA, Kelly PM, Márquez-Ruiz G, McGlynn H, Gilmore WS, Strain JJ. Bioavailability of n-3 polyunsaturated fatty acids (PUFA) in foods enriched with microencapsulated fish oil. Ann Nutr Metab 2000; 44: 157162.
  • 97
    Scheepens A, Tan K, Paxton JW. Improving the oral bioavailability of beneficial polyphenols through designed synergies. Genes Nutr 2010; 5: 7587.
  • 98
    Brand W, Van Der Wel PAI, Rein MJ, Barron D, Williamson G, Van Bladeren PJ, Rietjens IMCM. Metabolism and transport of the citrus flavonoid hesperetin in Caco-2 cell monolayers. Drug Metab Dispos 2008; 36: 17941802.
  • 99
    Hong J, Lambert JD, Lee SH, Sinko PJ, Yang CS. Involvement of multidrug resistance-associated proteins in regulating cellular levels of (-)-epigallocatechin-3-gallate and its methyl metabolites. Biochem Biophys Res Commun 2003; 310: 222227.
  • 100
    Crespy V, Morand C, Besson C, Manach C, Demigne C, Remesy C. Quercetin, but not its glycosides, is absorbed from the rat stomach. J Agric Food Chem 2002; 50: 618621.
  • 101
    Biehler E, Bohn T. Methods for assessing aspects of carotenoid bioavailability. Curr Nutr Food Sci 2010; 6: 4469.
  • 102
    Gärtner C, Stahl W, Sies H. Lycopene is more bioavailable from tomato paste than from fresh tomatoes. Am J Clin Nutr 1997; 66: 116122.
  • 103
    Porrini M, Riso P, Testolin G. Absorption of lycopene from single or daily portions of raw and processed tomato. Br J Nutr 1998; 80: 353361.
  • 104
    Richelle M, Bortlik K, Liardet S, Hager C, Lambelet P, Baur M, Applegate LA, Offord EA. A food-based formulation provides lycopene with the same bioavailability to humans as that from tomato paste. J Nutr 2002; 132: 404408.
  • 105
    Benzie IFF, Chung WY, Wang J, Richelle M, Bucheli P. Enhanced bioavailability of zeaxanthin in a milk-based formulation of wolfberry (Gou Qi Zi; Fructus barbarum L.). Br J Nutr 2006; 96: 154160.
  • 106
    Pouteau EB, Monnard IE, Piguet-Welsch C, Groux MJA, Sagalowicz L, Berger A. Non-esterified plant sterols solubilized in low fat milks inhibit cholesterol absorption: a stable isotope double-blind crossover study. Eur J Nutr 2003; 42: 154164.
  • 107
    Rossi L, Seijen Ten Hoorn JWM, Melnikov SM, Velikov KP. Colloidal phytosterols: synthesis, characterization and bioaccessibility. Soft Matter 2010; 6: 928936.
  • 108
    Clifford MN. Chlorogenic acids and other cinnamates – Nature, occurrence, dietary burden, absorption and metabolism. J Sci Food Agric 2000; 80: 10331043.
  • 109
    George SE, Ramalakshmi K, Rao LJM. A perception on health benefits of coffee. Crit Rev Food Sci Nutr 2008; 48: 464486.
  • 110
    Higdon JV, Frei B. Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr 2006; 46: 101123.
  • 111
    Ferruzzi MG. The influence of beverage composition on delivery of phenolic compounds from coffee and tea. Physiol Behav 2010; 100: 3341.
  • 112
    Stalmach A, Mullen W, Barron D, Uchida K, Yokota T, Cavin C, Steiling H, Williamson G, Crozier A. Metabolite profiling of hydroxycinnamate derivatives in plasma and urine after the ingestion of coffee by humans: identification of biomarkers of coffee consumption. Drug Metab Dispos 2009; 37: 17491758.
  • 113
    Renouf M, Guy PA, Marmet C, Fraering AL, Longet K, Moulin J, Enslen M, Barron D, Dionisi F, Cavin C, Williamson G, Steiling H. Measurement of caffeic and ferulic acid equivalents in plasma after coffee consumption: small intestine and colon are key sites for coffee metabolism. Mol Nutr Food Res 2010; 54: 760766.
  • 114
    Redeuil K, Smarrito-Menozzi C, Guy P, Rezzi S, Dionisi F, Williamson G, Nagy K, Renouf M. Identification of novel circulating coffee metabolites in human plasma by liquid chromatography-mass spectrometry. J Chromatogr A 2011; 1218: 46784688.
  • 115
    Williamson G, Dionisi F, Renouf M. Flavanols from green tea and phenolic acids from coffee: critical quantitative evaluation of the pharmacokinetic data in humans after consumption of single doses of beverages. Mol Nutr Food Res 2011; 55: 864873.
  • 116
    Renouf M, Marmet C, Guy P, Fraering AL, Longet K, Moulin J, Enslen M, Barron D, Cavin C, Dionisi F, Rezzi S, Kochhar S, Steiling H, Williamson G. Nondairy creamer, but not milk, delays the appearance of coffee phenolic acid equivalents in human plasma. J Nutr 2010; 140: 259263.
  • 117
    Duarte GS, Farah A. Effect of simultaneous consumption of milk and coffee on chlorogenic acids' bioavailability in humans. J Agric Food Chem 2011; 59: 79257931.
  • 118
    Gupta J, Siddique YH, Beg T, Ara G, Afzal M. A review on the beneficial effects of tea polyphenols on human health. Int J Pharm 2008; 4: 314338.
  • 119
    Feng WY. Metabolism of green tea catechins: an overview. Curr Drug Metab 2006; 7: 755809.
  • 120
    Crozier A, Del RD, Clifford MN. Bioavailability of dietary flavonoids and phenolic compounds. Mol Aspects Med 2010; 31: 446467.
  • 121
    Del Rio D, Calani L, Cordero C, Salvatore S, Pellegrini N, Brighenti F. Bioavailability and catabolism of green tea flavan-3-ols in humans. Nutrition 2010; 26: 11101116.
  • 122
    van der Burg-Koorevaar MC, Miret S, Duchateau GS. Effect of milk and brewing method on black tea catechin bioaccessibility. J Agric Food Chem 2011; 59: 77527758.
  • 123
    van het Hof KH, Kivits GA, Weststrate JA, Tijburg LB. Bioavailability of catechins from tea: the effect of milk. Eur J Clin Nutr 1998; 52: 356359.
  • 124
    Mazzanti G, Menniti-Ippolito F, Moro PA, Cassetti F, Raschetti R, Santuccio C, Mastrangelo S. Hepatotoxicity from green tea: a review of the literature and two unpublished cases. Eur J Clin Pharmacol 2009; 65: 331341.
  • 125
    Dillinger TL, Barriga P, Escárcega S, Jimenez M, Lowe DS, Grivetti LE. Food of the gods: cure for humanity? A cultural history of the medicinal and ritual use of chocolate. J Nutr 2000; 130: (8 Suppl.):2057S2072.
  • 126
    Bruinsma K, Taren DL. Chocolate: food or drug? J Am Diet Assoc 1999; 99: 12491256.
  • 127
    Richelle M, Tavazzi I, Enslen M, Offord EA. Plasma kinetics in man of epicatechin from black chocolate. Eur J Clin Nutr 1999; 53: 2226.
  • 128
    Aron PM, Kennedy JA. Flavan-3-ols: nature, occurrence and biological activity. Mol Nutr Food Res 2008; 52: 79104.
  • 129
    Kuhnle G, Spencer JPE, Schroeter H, Shenoy B, Debnam ES, Srai SKS, Rice-Evans C, Hahn U. Epicatechin and catechin are O-methylated and glucuronidated in the small intestine. Biochem Biophys Res Commun 2000; 277: 507512.
  • 130
    Shali NA, Curtis CG, Powell GM, Roy AB. Sulphation of the flavonoids quercetin and catechin by rat liver. Xenobiotica 1991; 21: 881893.
  • 131
    Corti R, Flammer AJ, Hollenberg NK, Luscher TF. Cocoa and cardiovascular health. Circulation 2009; 119: 14331441.
  • 132
    Hodgson JM, Croft KD. Tea flavonoids and cardiovascular health. Mol Aspects Med 2010; 31: 495502.
  • 133
    Schroeter H, Heiss C, Balzer J, Kleinbongard P, Keen CL, Hollenberg NK, Sies H, Kwik-Uribe C, Schmitz HH, Kelm M. (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci U S A 2006; 103: 10241029.
  • 134
    Baba S, Osakabe N, Yasuda A, Natsume M, Takizawa T, Nakamura T, Terao J. Bioavailability of (–)-epicatechin upon intake of chocolate and cocoa in human volunteers. Free Radic Res 2000; 33: 635641.
  • 135
    Serafini M, Bugianesi R, Maiani G, Valtuena S, De SS, Crozier A. Plasma antioxidants from chocolate. Nature 2003; 424: 1013.
  • 136
    Keogh JB, McInerney J, Clifton PM. The effect of milk protein on the bioavailability of cocoa polyphenols. J Food Sci 2007; 72: S230S233.
  • 137
    Roura E, Andres-Lacueva C, Estruch R, Mata-Bilbao ML, Izquierdo-Pulido M, Waterhouse AL, Lamuela-Raventos RM. Milk does not affect the bioavailability of cocoa powder flavonoid in healthy human. Ann Nutr Metab 2007; 51: 493498.
  • 138
    Roura E, Andres-Lacueva C, Estruch R, Lourdes Mata BM, Izquierdo-Pulido M, Lamuela-Raventos RM. The effects of milk as a food matrix for polyphenols on the excretion profile of cocoa (-)-epicatechin metabolites in healthy human subjects. Br J Nutr 2008; 100: 846851.
  • 139
    Schroeter H, Holt RR, Orozco TJ, Schmitz HH, Keen CL. Nutrition: milk and absorption of dietary flavanols. Nature 2003; 426: 787788.
  • 140
    Mullen W, Borges G, Donovan JL, Edwards CA, Serafini M, Lean ME, Crozier A. Milk decreases urinary excretion but not plasma pharmacokinetics of cocoa flavan-3-ol metabolites in humans. Am J Clin Nutr 2009; 89: 17841791.
  • 141
    Schramm DD, Karim M, Schrader HR, Holt RR, Kirkpatrick NJ, Polagruto JA, Ensunsa JL, Schmitz HH, Keen CL. Food effects on the absorption and pharmacokinetics of cocoa flavanols. Life Sci 2003; 73: 857869.
  • 142
    Neilson AP, George JC, Janle EM, Mattes RD, Ralf R, Matusheski NV, Ferruzzi MG. Influence of chocolate matrix composition on cocoa flavan-3-ol bioaccessibility in vitro and bioavailability in humans. J Agric Food Chem 2009; 57: 94189426.
  • 143
    Donovan JL, Manach C, Rios L, Morand C, Scalbert A, Rémésy C. Procyanidins are not bioavailable in rats fed a single meal containing a grapeseed extract or the procyanidin dimer B3. Br J Nutr 2002; 87: 299306.
  • 144
    Gonthier MP, Donovan JL, Texier O, Felgines C, Remesy C, Scalbert A. Metabolism of dietary procyanidins in rats. Free Radic Biol Med 2003; 35: 837844.
  • 145
    Holt RR, Lazarus SA, Cameron Sullards M, Zhu QY, Schramm DD, Hammerstone JF, Fraga CG, Schmitz HH, Keen CL. Procyanidin dimer B2 [epicatechin-(4β-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am J Clin Nutr 2002; 76: 798804.
  • 146
    Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JPE. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr 2011; 93: 6272.
  • 147
    Horcajada MN, Habauzit V, Trzeciakiewicz A, Morand C, Gil-Izquierdo A, Mardon J, Lebecque P, Davicco MJ, Chee WSS, Coxam V, Offord E. Hesperidin inhibits ovariectomized-induced osteopenia and shows differential effects on bone mass and strength in young and adult intact rats. J Appl Physiol 2008; 104: 648654.
  • 148
    Rizza S, Muniyappa R, Iantorno M, Kim JA, Chen H, Pullikotil P, Senese N, Tesauro M, Lauro D, Cardillo C, Quon MJ. Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. J Clin Endocrinol Metab 2011; 96: E782E792.
  • 149
    Manach C, Morand C, Demigne C, Texier O, Regerat F, Remesy C. Bioavailability of rutin and quercetin in rats. FEBS Lett 1997; 409: 1216.
  • 150
    Brett GM, Hollands W, Needs PW, Teucher B, Dainty JR, Davis BD, Brodbelt JS, Kroon PA. Absorption, metabolism and excretion of flavanones from single portions of orange fruit and juice and effects of anthropometric variables and contraceptive pill use on flavanone excretion. Br J Nutr 2009; 101: 664675.
  • 151
    Erlund I, Silaste ML, Alfthan G, Rantala M, Kesaniemi YA, Aro A. Plasma concentrations of the flavonoids hesperetin, naringenin and quercetin in human subjects following their habitual diets, and diets high or low in fruit and vegetables. Eur J Clin Nutr 2002; 56: 891898.
  • 152
    Manach C, Morand C, Gil-Izquierdo A, Bouteloup-Demange C, Remesy C. Bioavailability in humans of the flavanones hesperidin and narirutin after the ingestion of two doses of orange juice. Eur J Clin Nutr 2003; 57: 235242.
  • 153
    Mullen W, Archeveque MA, Edwards CA, Matsumoto H, Crozier A. Bioavailability and metabolism of orange juice flavanones in humans: impact of a full-fat yogurt. J Agric Food Chem 2008; 56: 1115711164.
  • 154
    Nielsen IL, Chee WS, Poulsen L, Offord-Cavin E, Rasmussen SE, Frederiksen H, Enslen M, Barron D, Horcajada MN, Williamson G. Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans: a randomized, double-blind, crossover trial. J Nutr 2006; 136: 404408.
  • 155
    De Goede J, Geleijnse JM, Boer JMA, Kromhout D, Verschuren WMM. Marine (n-3) fatty acids, fish consumption, and the 10-year risk of fatal and nonfatal coronary heart disease in a large population of Dutch adults with low fish intake. J Nutr 2010; 140: 10231028.
  • 156
    Gonzàlez-Barrio R, Trindade LM, Manzanares P, de Graaff LH, Tomàs-Barberàn FA, Espìn JC. Production of bioavailable flavonoid glucosides in fruit juices and green tea by use of fungal alpha-L-rhamnosidases. J Agric Food Chem 2004; 52: 61366142.
  • 157
    Innis SM. Dietary (n-3) fatty acids and brain development. J Nutr 2007; 137: 855859.
  • 158
    Quinn JF, Raman R, Thomas RG, Yurko-Mauro K, Nelson EB, Van Dyck C, Galvin JE, Emond J, Jack CR Jr, Weiner M, Shinto L, Aisen PS. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. JAMA 2010; 304: 19031911.
  • 159
    Vedtofte MS, Jakobsen MU, Lauritzen L, Heitmann BL. Dietary α-linolenic acid, linoleic acid, and n-3 long-chain PUFA and risk of ischemic heart disease. Am J Clin Nutr 2011; 94: 10971103.
  • 160
    Wang W, Shinto L, Connor WE, Quinn JF. Nutritional biomarkers in Alzheimer's disease: the association between carotenoids, n-3 fatty acids, and dementia severity. J Alzheimers Dis 2008; 13: 3138.
  • 161
    Minich DM, Vonk RJ, Verkade HJ. Intestinal absorption of essential fatty acids under physiological and essential fatty acid-deficient conditions. J Lipid Res 1997; 38: 17091721.
  • 162
    Trotter PJ, Ho SY, Storch J. Fatty acid uptake by Caco-2 human intestinal cells. J Lipid Res 1996; 37: 336346.
  • 163
    Zhi J, Melia AT, Eggers H, Joly R, Patel IH. Review of limited systemic absorption of orlistat, a lipase inhibitor, in healthy human volunteers. J Clin Pharmacol 1995; 35: 11031108.