Frequent HPRT mutations in paroxysmal nocturnal haemoglobinuria reflect T cell clonal expansion, not genomic instability

Authors


Neal S. Young, Haematology Branch, National Heart, Lung, and Blood Institutes, 9000 Rockville Pike, Bethesda, MD 20892-1652, USA. E-mail: youngn@nhlbi.nih.gov

Summary

Paroxysmal nocturnal haemoglobinuria (PNH) results from acquired mutations in the PIG-A gene of an haematopoietic stem cell, leading to defective biosynthesis of glycosylphosphatidylinositol (GPI) anchors and deficient expression of GPI-anchored proteins on the surface of the cell's progeny. Some laboratory and clinical findings have suggested genomic instability to be intrinsic in PNH; this possibility has been supported by mutation analysis of hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene abnormalities. However, the HPRT assay examines lymphocytes in peripheral blood (PB), and T cells may be related to the pathophysiology of PNH. We analysed the molecular and functional features of HPRT mutants in PB mononuclear cells from eleven PNH patients. CD8 T cells predominated in these samples; approximately half of the CD8 cells lacked GPI-anchored protein expression, while only a small proportion of CD4 cells appeared to derive from the PNH clone. The HPRT mutant frequency (Mf) in T lymphocytes from PNH patients was significantly higher than in healthy controls. The majority of the mutant T lymphocyte clones were of CD4 phenotype, and they had phenotypically normal GPI-anchored protein expression. In PNH patients, the majority of HPRT mutant clones were contained within the Vβ2 T cell receptor (TCR) subfamily, which was oligoclonal by complementarity-determining region three (CDR3) size analysis. Our results are more consistent with detection of uniform populations of expanded T cell clones, which presumably acquired HPRT mutations during antigen-driven cell proliferation, and not due to an increased Mf in PNH. HPRT mutant analysis does not support underlying genomic instability in PNH.

Ancillary