• hepcidin;
  • p53;
  • iron;
  • cancer;
  • inflammation;
  • anaemia


Hepcidin is an iron-regulatory protein that is upregulated in response to increased iron or inflammatory stimuli. Hepcidin reduces serum iron and induces iron sequestration in the reticuloendothelial macrophages – the hallmark of anaemia of inflammation. Iron deprivation is used as a defense mechanism against infection, and it also has a beneficial effect on the control of cancer. The tumour-suppressor p53 transcriptionally regulates genes involved in growth arrest, apoptosis and DNA repair, and perturbation of p53 pathways is a hallmark of the majority of human cancers. This study inspected a role of p53 in the transcriptional regulation of hepcidin. Based on preliminary bioinformatics analysis, we identified a putative p53 response-element (p53RE) contained in the hepcidin gene (HAMP) promoter. Chromatin immunoprecipitation (ChIP), reporter assays and a temperature sensitive p53 cell-line system were used to demonstrate p53 binding and activation of the hepcidin promoter. p53 bound to hepcidin p53RE in vivo, andthis p53RE could confer p53-dependent transcriptional activation. Activation of p53 increased hepcidin expression, while silencing of p53 resulted in decreased hepcidin expression in human hepatoma cells. Taken together, these results define HAMP as a novel transcriptional target of p53. We hypothesise that hepcidin upregulation by p53 is part of a defence mechanism against cancer, through iron deprivation. Hepcidin induction by p53 might be involved in the pathogenesis of anaemia accompanying cancer.