SEARCH

SEARCH BY CITATION

Summary

Allergen-specific immunotherapy (SIT) is the only specific and disease-modifying approach for the treatment of allergy but several disadvantages have limited its broad applicability. We argue that the majority of the possible disadvantages of SIT such as unwanted effects, poor efficacy and specificity as well as inconvenient application are related to the poor quality of natural allergen extracts, which are the active ingredients of all currently available allergy vaccines. Because of the progress made in the field of molecular allergen characterization, new allergy vaccines based on recombinant allergens, recombinant hypoallergenic allergen derivatives and allergen-derived T cell peptides have entered clinical testing and hold promise to reduce the side-effects and to increase the specificity as well as the efficacy of SIT. Here, we present a refined immunotherapy concept, which is based on the use of peptides derived from allergen surfaces that exhibit reduced, allergen-specific IgE as well as T cell reactivity. These peptides when fused to non-allergenic carriers give rise to allergen-specific protective IgG responses with T cell help from a non-allergenic carrier molecule. We summarize the experimental data demonstrating that such peptide vaccines can bypass allergen-specific IgE as well as T cell activation and may be administered at high doses without IgE- and T cell-mediated side-effects. Should these peptide vaccines prove efficacious and safe in clinical trials, it may become possible to develop convenient, safe and broadly applicable forms of SIT as true alternatives to symptomatic, drug-based allergy treatment.

Cite this as: M. Focke, I. Swoboda, K. Marth and R. Valenta, Clinical & Experimental Allergy, 2010 (40) 385–397.