SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Babior BM. Oxygen-dependent microbial killing by phagocytes. N Engl J Med 1978;298:65968.
  • 2
    Sasada M, Johnson RB. Macrophage microbicidal activity. Correlation between phagocytosis-associated oxidalive metabolism and the killing of Candida by macrophages. J Exp Med 1980;152:8598.
  • 3
    Bass DA, Parce JW, DeChatelet LR, et al. Flow cytomctric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol 1983;130:191017.
  • 4
    Rayfield EJ, Ault MJ, Keusch GT, et al. Infection and diabetes: the case for glucose control. Am J Med 1982;72:43950.
  • 5
    Kitahara M, Eyre HJ, Lynch RE, et al. Metabolic activity of diabetic monocytes. Diabetes 1980;29:2516.
  • 6
    Shah SV, Wallin JD, Eilen SD. Chemiluminescence and superoxide anion production by leukocytes from diabetic patients. J Clin Endocrinol Metab 1983;57:4029.
  • 7
    Wierusz-Wysocka B, Wysocki H, Wykretowiez A, et al. Phagocytosis, bactericidal capacity, and superoxide anion (O-2) production by polymorphonuclcar neutrophils from patients with diabetes mellitus. Folia Hematol (Leipzig) 1985;112:65868.
  • 8
    Hiramatsu K, Arimori S. Increased superoxide production by mononuclear cells of patients with hypertriglyceridemia and diabetes. Diabetes 1988;37:8327.
  • 9
    Klebanoff SJ, Rosen H. The role of myeloperoxidase in the microbicidal activity of polymorphonuclear leukocytes. Ciba Found Symp 1978;65:26384.
  • 10
    Robinson JP, Bruner LH, Bassoe CF, et al. Measurement of intracellular fluorescence of human monocytes relative to oxidative metabolism. J Leukocyte Biol 1988;43:30410.
  • 11
    Zeller JM, Rothberg L, Landay AL. Evaluation of human monocyte oxidative metabolism utilizing a (low cytometric assay. Clin Exp Immunol 1989;78:916.
  • 12
    Kobzik L, Godleski JJ, Brain JD. Oxidative metabolism in the alveolar macrophage: analysis by flow cytometry. J Leukocyte Biol 1990;47:295303.
  • 13
    Bachner RL, Johnston RB Jr. Monocyte function in children with ncutropenia and chronic infections. Blood 1972;40:3141.
  • 14
    Steigbigel RT, Lambert LH Jr. Remington JS. Phagocytic and bactericidal properties of normal human monocytes. J Clin Invest 1974;53:13142.
  • 15
    Johnston RB Jr Lehmeyer JE, Guthrie LA. Generation of superoxide anion and chemiluminesccnce by human monocyles during phagocytosis and on contact with surface-bound immunoglobulin G. J Exp Med 1976;143:15516.
  • 16
    Kitagawa S, Takaku F, Sakamoto S. A comparison of the superoxide-releasing response in human polymorphonuclcar leukocytes and monocytes. J Immunol 1980;125:35964.
  • 17
    Mohsenin V, Latifpour J. Respiratory burst in alveolar macrophages of diabetic rats. J Appl Phyiol 1990;68:238490.
  • 18
    Ludwig PW, Hunninghake, DB Hoidal JR. Increased leucocyte oxidative metabolism in hyperlipoproteinaemia. Lancet 1982;ii:34850.
  • 19
    Esmann V. The diabetic leucocytes. Enzyme 1972;13:3255.
  • 20
    Kador PF. The role of aldose reduclase in the development of diabetic complications. Med Res Rev 1988;8:32552.
  • 21
    Wolff SP. The potential role of oxidativc stress in diabetes and its complications: novel implications for theory and therapy. In: CrabbleMJC, ed. Diabetic complications: scientific and clinical aspects. New York : Churchill-Livingstone, 1987; 167220.
  • 22
    Rossi F. The O-2 -forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function. Biochem Biophys Acta 1986;853:6589.
  • 23
    Miller JA, Gravallcse E, Bunn HF. Nonenzymatic glycosylation of crythrocyte membrane proteins. Relevance todiabetes. J Clin Invest 1980;65:896901.
  • 24
    Brownlee M, Vlassara H, Cerami A. Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med 1984;101:52737.
  • 25
    Lopes-Virella MF, Klein RL, Lyons TJ, et al. Glycosylation of low-density lipoprotein enhances cholesteryl ester synthesis in human monocyte-derived macrophages. Diabetes 1988;37:5507.
  • 26
    Kirstein M, Brett J, Radoff S, et al. Advanced protein glycosylation induces transendothelial human monocyte chemotaxis and secretion of platelet-derived growth factor: Role in vascular disease of diabetes and aging. Proc Nail Acad Sci USA 1990;87:901014.
  • 27
    Vlassara H, Valinsky J, Brownlee M, et al. Advanced glycosylation endproducts on erythrocyte cell surface induce receptor-mediated phagocytosis by macrophages. A model for turn over of aging cells. J Exp Med 1987;166:53949.
  • 28
    Gilcrease MZ, Hoover RL. Activated human monocytes exhibit receptor-mediated adhesion to a non-enzymatically glycosylated protein substrate. Diabetologia 1987;33:32933.
  • 29
    Tsuru S, Shinomiya N, Nomoto K. Depression of early protection against influenza virus infection by cyclophosphatnide and its restoration by Y-19995[2.4′-bis(l-methyl-2-dimethyl-aminoethoxyl)-3-bcnzoylpyridine dimaleate]. Nat Immunol Cell Growth Regul 1991; 10:111.
  • 30
    Hosteller MK. Handicaps to host defense. Effects of hyperglycemia on C3 and Candida albicans. Diabetes 1990;39:2715.