Expression and subcellular distribution of toll-like receptors TLR4, TLR5 and TLR9 on the gastric epithelium in Helicobacter pylori infection

Authors


Dr Bernd Schmaußer, Institut für Pathologie, Universität Würzburg, Josef-Schneider-Str 2, 97080 Würzburg, Germany.
  E-mail: schmausser@web.de

SUMMARY

Toll-like receptors (TLRs) expressed by mucosal epithelium play an essential role in the defense against microbes by recognizing conserved bacterial molecules. For the first time TLR4, TLR5 and TLR9 have been microanatomically localized in patients with noninflamed gastric mucosa and Helicobacter pylori gastritis by immunohistochemistry. Because polarized expression of TLRs in apical and basolateral epithelial compartments is thought to modulate mucosal immunity, subcellular TLR distribution by gastric epithelium was investigated using confocal microscopy. TLR4, TLR5 and TLR9 were expressed by gastric epithelium in antrum and corpus of all patients with H. pylori gastritis (n = 14) and with noninflamed gastric mucosa (n = 5). TLR4 was expressed at the apical and the basolateral pole of the gastric epithelium as well in noninflamed gastric mucosa as in H. pylori gastritis. TLR5 and TLR9 expression in the noninflamed gastric mucosa was identical to that of TLR4 with localization at the apical and the basolateral epithelial pole. However, in H. pylori gastritis TLR5 and TLR9 expression on the gastric epithelium changed to an exclusive basolateral localization without detectable expression at the apical pole. In the human stomach, the gastric epithelium expressed TLR4, TLR5 and TLR9, which gives it the possibility to interact with H. pylori. Furthermore, gastric epithelial TLR4 expression is highly polarized in an apical and a basolateral compartment, whereas TLR5 and TLR9 polarization seems to be a process dynamically influenced by H. pylori infection. This polarized and dynamically regulated gastric epithelial expression of TLRs supports a sentinel role for these receptors in the mucosal immunity to H. pylori.

Ancillary