SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Weinblatt ME, Kremer JM, Coblyn JS et al. Pharmacokinetics, safety, and efficacy of combination treatment with methotrexate and leflunomide in patients with active rheumatoid arthritis. Arthritis Rheum 1999; 42: 13228.
  • 2
    Davis JP, Cain GA, Pitts WJ, Magolda RL, Copeland RA. The immunosuppressive metabolite of leflunomide is a potent inhibitor of human dihydroorotate dehydrogenase. Biochemistry 1996; 35: 12703.
  • 3
    Bruneau JM, Yea CM, Spinella-Jaegle S et al. of human dihydro-orotate dehydrogenase and its inhibition by A77 1998, 1726, the active metabolite of leflunomide. Biochem J, 336: 299–303.
  • 4
    Mattar T, Kochhar K, Bartlett R, Bremer EG, Finnegan A. Inhibition of the epidermal growth factor receptor tyrosine kinase activity by leflunomide. FEBS Lett 1993; 334: 1614.
  • 5
    Williamson RE, Yea CM, Robson PA et al. Dihydroorotate dehydrogenase is a high affinity binding protein for A77 1726 and mediator of a range of biological effects of the immunomodulatory compound. J Biol Chem 1995; 270: 2246772.
  • 6
    Fox RI. Mechanism of action of leflunomide in rheumatoid arthritis. J Rheumatol 1998; 53: 206.
  • 7
    Manna SK, Aggarwal BB. Immunosuppressive leflunomide metabolite (A77 1999, 1726 blocks TNF–dependent nuclear factor–kappa B activation and gene expression. J Immunol . 162: 2095–102.
  • 8
    Karin M, Liu Z, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol 1997; 9: 2406.
  • 9
    Whitmarsh AJ, Davis RJ. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 1996; 74: 589607.
  • 10
    Schett G, Tohidast-Akrad M, Smolen JS et al. Activation, differential localization, and regulation of the stress-activated protein kinases, extracellular signal-regulated kinase, c-JUN N-terminal kinase, and p38 mitogen-activated protein kinase, in synovial tissue and cells in rheumatoid arthritis. Arthritis Rheum 2000; 43: 250112.
  • 11
    Firestein GS. Mechanisms of tissue destruction and cellular activation in rheumatoid arthritis. Curr Opin Rheumatol 1992; 4: 34854.
  • 12
    Piecyk M, Anderson P. Signal transduction in rheumatoid arthritis. Best Pract Res Clin Rheumatol 2001; 15: 789803.
  • 13
    Matrisian LM. Matrix metalloproteinase gene expression. Ann NY Acad Sci 1994; 732: 4250.
  • 14
    Westermarck J, Kahari VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 1999; 13: 78192.
  • 15
    Corcoran ML, Hewitt RE, Kleiner DE, Stetler-Stevenson WG. MMP-2: expression, activation and inhibition. Enzyme Protein 1996; 49: 719.
  • 16
    Bondeson J, Brennan F, Foxwell B, Feldmann M. Effective adenoviral transfer of IkappaBalpha into human fibroblasts and chondrosarcoma cells reveals that the induction of matrix metalloproteinases and proinflammatory cytokines is nuclear factor-kappaB dependent. J Rheumatol 2000; 27: 207889.
  • 17
    Burger D, Begue-Pastor N, Benavent S, Gruaz L, Kaufmann MT, Chicheportiche R, Dayer JM. The active metabolite of leflunomide, A77, 1726, inhibits the production of prostaglandin E (2), matrix metalloproteinase 1 and interleukin 6 in human fibroblast–like synoviocytes. Rheumatology 2003; 42: 89–96.
  • 18
    Elkayam O, Yaron I, Shirazi I, Judovitch R, Caspi D, Yaron M. Active leflunomide metabolite inhibits interleukin 1beta, tumour necrosis factor alpha, nitric oxide, and metalloproteinase-3 production in activated human synovial tissue cultures. Ann Rheum Dis 2003; 62: 4403.