SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Greenfield EA, Nguyen KA, Kuchoo VK. CD28/B7 costimulation: a review. Crit Rev Immunol 1998; 18: 389418.
  • 2
    McDyer JF, Goletz TJ, Thomas E, June CH, Seder RA. CD40 ligand/CD40 stimulation regulates the production of IFNγ from human peripheral blood mononuclear cells in an IL-12 and/or CD28-dependent manner. J Immunol 1998; 160: 17017.
  • 3
    Stüber E, Strober W, Neurath M. Blocking the CD40L/CD40 interaction in vivo specifically prevents the priming of T helper 1 cells through the inhibition of interleukin 12 secretion. J Exp Med 1996; 183: 6938.
  • 4
    Morse MA, Lyerly K, Gilboa E, Thomas E, Nair SK. Optimization of the sequence of antigen loading and CD40-ligand induced maturation of dendritic cells. Cancer Res 1998; 58: 29658.
  • 5
    Yang Y, Wilson JM. CD40 ligand-dependent T cell activation requirement of B7-CD28 signalling though CD40. Science 1996; 273: 18624.
  • 6
    Tan JS, Canady DH, Boom WH, Balaji KN, Schwander SK. Human alveolar T lymphocyte response to Mycobacterium tuberculosis. Role for CD4+ and CD8+ cytotoxic T cells and relative resistance of alveolar macrophages to lysis. J Immunol 1997; 159: 2907.
  • 7
    Flynn JL, Goldstein MM, Triebold KJ, Koller B, Bloom BR. Major histocompatibility class I restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc Natl Acad Sci USA 1992; 89: 120137.
  • 8
    Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart T, Bloom BR. An essential role for Interferon-γ in resistance to Mycobacteriun tuberculosis infection. J Exp Med 1993; 178: 224954.
  • 9
    Toosi Z, Gogate P, Shiratsuchi H, Young T, Ellner JJ. Enhanced production of TGF-β by blood monocytes from patients with active tuberculosis and presence of TGF-β in tuberculosis granulomatous lung lesions. J Immunol 1995; 154: 46573.
  • 10
    Dlugovizky DA, Torrez-Morales A, Rateni L, Farroni MA, Largacha O, Molteni O, Bottasso O. Circulating profile of Th1 and Th2 cytokines in tuberculosis patients with different degrees of pulmonary involvement. FEMS Immunol Med Microbiol 1997; 18: 2037.
  • 11
    Boussiotis VA, Tsai EY, Yunis EJ, Thim S, Delgado JC, Dascher CC, Berezovskaya A, Rousset D, Reynes JM, Goldfeld AE. IL-10-producing T cells suppress immune responses in anergic tuberculosis patients. J Clin Invest 2000; 105: 131725.
  • 12
    Moore KW, De Wall Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the Interleukin-10 receptor. Annu Rev Immunol 2001; 19: 683765.
  • 13
    Shaw T, Thomas LH, Friedland JL. Regulation of IL-10 secretion after phagocytosis of Mycobacterium tuberculosis by human monocytic cells. Cytokine 2000; 12: 4836.
  • 14
    Sieling PA, Abrams JS, Yamamura M, Salgame P, Bloom BR, Rea TH, Modlin RL. Immunosuppressive roles for IL-10 and IL-4 in human infection. In vitro modulation of T cell responses in leprosy. J Immunol 1993; 150: 550110.
  • 15
    Orme I, Roberts A, Grieffen J, Abrams JS. Cytokine secretion by CD4+ T lymphocytes acquired in response to Mycobacterium tuberculosis infection. J Immunol 1993; 151: 51825.
  • 16
    Serbina N, Lazarevic V, Flynn J. CD4+ T cells are required for the development of cytotoxic CD8+ T cells during Mycobacterium tuberculosis infection. J Immunol 2001; 167: 699100.
  • 17
    Kabelitz D, Bender A, Schondelmaier S, Schoe B, Kaufmann SHE. A large fraction of human peripheral blood γ/δ T cells is activated by Mycobacterium tuberculosis but not by its 65-kD heat shock protein. J Exp Med 1990; 171: 66779.
  • 18
    Tsukaguchi K, Balaji KN, Boom WH. CD4+αβ T cell and γδ T cell responses to Mycobacterium tuberculosis. similarities and differences in antigen recognition, cytotoxic effector function, and cytokine production. J Immunol 1995; 154: 178696.
  • 19
    Balaji K, Boom WH. Processing of Mycobacterium tuberculosis by human monocytes for CD4+αβ and γδ T cells role of particulate antigen. Infect Immun 1998; 66: 98106.
  • 20
    Canaday DH, Ziebold Ch, Noss EH, Chervenak KA, Harding CV, Boom WH. Activation of human CD8+αβ TCR+ cells by Mycobacterium tuberculosis via an alternate class I MHC antigen-processing pathway. J Immunol 1999; 162: 3729.
  • 21
    De La Barrera SS, Finiasz M, Frias A et al. Specific lytic activity against mycobacterial antigens is inversely correlated with the severity of tuberculosis. Clin Exp Immunol 2003; 132: 45061.
  • 22
    Damle NK, Klussmann K, Linsley PS, Aruffo A. Differential costimulatory effects of adhesion molecules B7, ICAM-1, LFA-3 and VCAM-1 on resting and antigen-primed CD4+ T lymphocytes. J Immunol 1992; 148: 198992.
  • 23
    Boyum A. Isolation of mononuclear cells and granulocytes from human blood. Scand J Clin Invest 1968; 97: 7789.
  • 24
    Dagna L, Iellem A, Biswas P et al. Skewing of cytotoxic activity and chemokine production, but not of chemokine receptor expression, in human type-1/-2 gamma delta T lymphocytes. Eur J Immunol 2002; 32: 293443.
  • 25
    Morita CT, Beckman EM, Bukowski JF, Tanaka Y, Band H, Bloom BR, Golan DE, Brenner MB. Direct presentation of nonpeptide prenyl pyrophosphate antigens to human gamma delta T cells. Immunity 1995; 3: 495507.
  • 26
    Van Gool SW, Vandenberghe P, De Boer M, Ceuppens JL. CD80, CD86 and CD40 provide accessory signals in a multiple-step T-cell activation model. Immunol Rev 1996; 153: 4783.
  • 27
    Freeman GJ, Borriello F, Hodes RJ et al. Murine B7–2, an alternative CTLA4 counter-receptor that costimulates T cell proliferation and interleukin 2 production. J Exp Med 1993; 178: 218592.
  • 28
    Bluestone JA. New perspectives of CD28-B7-mediated T cell costimulation. Immunity 1995; 2: 5559.
  • 29
    Kim JJ, Bagarazzi ML, Trivedi N et al. Engineering of in vivo immune responses to DNA immunization via co-delivery of costimulatory molecule genes. Nat Biotechnol 1997; 15: 6416.
  • 30
    Ranheim EA, Kipps TJ. Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependent signal. J Exp Med 1993; 177: 92535.
  • 31
    Arinobu Y, Sugimoto R, Akaiwa M, Arima K, Otsuka T, Hamasaki N, Izuhara K. Augmentation of signal transducer and activation of transcription (STAT) 6 and STAT3 expression in stimulated B and T cells. Biochem Biophys Res Commun 2000; 277: 31724.
  • 32
    Francis DA, Karras JG, Ke XY, Sen R, Rothstein TL. Induction of the transcription factors NF-kappa B, AP-1 and NF-AT during B cell stimulation through the CD40 receptor. Int Immunol 1995; 7: 15161.
  • 33
    Foey AD, Feldmann M, Brennan FM. Route of monocyte differentiation determines their cytokine production profile: CD40 ligation induces interleukin 10 expression. Cytokine 2000; 12: 1496505.
  • 34
    McDyer JF, Goletz TJ, Thomas E, June CH, Seder RA. CD40 ligand/CD40 stimulation regulates the production of IFN-gamma from human peripheral blood mononuclear cells in an IL-12- and/or CD28-dependent manner. J Immunol 1998; 160: 17017.
  • 35
    Campos-Neto A, Ovendale P, Bement T, Koppi TA, Fanslow WC, Rossi MA, Alderson MR. CD40 ligand is not essential for the development of cell-mediated immunity and resistance to Mycobacterium tuberculosis. J Immunol 1998; 160: 203741.
  • 36
    Samten B, Thomas EK, Gong J, Barnes PF. Depressed CD40 ligand expression contributes to reduced gamma interferon production in human tuberculosis. Infect Immun 2000; 68: 30026.
  • 37
    Saunders BM, Frank AA, Orme IM. Granuloma formation is required to contain bacillus growth and delay mortality in mice chonically infected with Mycobacterium tuberculosis. Immunology 1999; 98: 3248.
  • 38
    Johnson CM, Cooper AM, Frank AA, Orme IM. Adequate expression of protective immunity in the absence of granuloma formation in Mycobacterium tuberculosis-infected mice with a disruption in the intracellular adhesion molecule 1 gene. Infect Immun 1998; 66: 166670.
  • 39
    Kim JJ, Tsai A, Nottingham LK et al. Intracellular adhesion molecule-1 modulates beta-chemokines and directly costimulates T cells in vivo. J Clin Invest 1999; 103: 86977.
  • 40
    Condos R, Raju B, Canova A, Zhao BY, Weiden M, Rom WN, Pine R. Recombinant gamma interferon stimulates signal transduction and gene expression in alveolar macrophages in vitro and in tuberculosis patients. Infect Immun 2003; 71: 205864.
  • 41
    Condos R, Rom WN, Liu YM, Schluger NW. Local immune responses correlate with presentation and outcome in tuberculosis. Am J Respir Crit Care Med 1998; 157: 72935.
  • 42
    Law KF, Jagirdar J, Weiden MD, Bodkin M, Rom WN. Tuberculosis in HIV-positive patients: cellular response and immune activation in the lung. Am J Respir Crit Care Med 1996; 153: 137784.
  • 43
    Ito S, Ansari P, Sakatsume M, Dickensheets H, Vazquez N, Donnelly RP, Larner AC, Finbloom DS. Interleukin-10 inhibits expression of both interferon alpha- and interferon gamma- induced genes by suppressing tyrosine phosphorylation of STAT1. Blood 1999; 93: 145663.
  • 44
    Ting LM, Kim AC, Cattamanchi A, Ernst JD. Mycobacterium tuberculosis inhibits IFN-gamma transcriptional responses without inhibiting activation of STAT1. J Immunol 1999; 163: 3898906.
  • 45
    Tobian AA, Potter NS, Ramachandra L, Pai RK, Convery M, Boom WH, Harding CV. Alternate class I MHC antigen processing is inhibited by Toll-like receptor signaling pathogen-associated molecular patterns. Mycobacterium tuberculosis 19-kDa lipoprotein, CpG DNA, and lipopolysaccharide. J Immunol 2003; 171: 141322.
  • 46
    Noss EH, Pai RK, Sellati TJ, Radolf JD, Belisle J, Golenbock DT, Boom WH, Harding CV. Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis. J Immunol 2001; 167: 9108.
  • 47
    Fortsch D, Rollinghoff M, Stenger S. IL-10 converts human dendritic cells into macrophage-like cells with increased antibacterial activity against virulent Mycobacterium tuberculosis. J Immunol 2000; 165: 97887.
  • 48
    De Smedt T, Van Mechelen M, De Becker G, Urbain J, Leo O, Moser M. Effect of interleukin-10 on dendritic cell maturation and function. Eur J Immunol 1997; 27: 122935.