SEARCH

SEARCH BY CITATION

References

  • 1
    Kim SJ, Hong YP, Lew WJ, Yang SC, Lee EG. Incidence of pulmonary tuberculosis among diabetics. Tuber Lung Dis 1995; 76: 52933.
  • 2
    Yamagishi F. Medical risk factors of tuberculosis and countermeasures. Kekkaku 2002; 77: 799804 (in Japanese).
  • 3
    Delamaire M, Maugendre D, Moreno M, Goff MC, Allannic H, Genetet B. Impaired leucocyte functions in diabetic patients. Diabet Med 1997; 14: 2934.
  • 4
    Naghibi M, Smith RP, Baltch AL, Gates SA, Wu DH, Hammer MC, Michelsen PB. The effect of diabetes mellitus on chemotactic and bactericidal activity of human polymorphonuclear leukocytes. Diabetes Res Clin Pract 1987; 4: 2735.
  • 5
    Wilson RM, Tomlinson DR, Reeves WG. Neutrophil sorbitol production impairs oxidative killing in diabetes. Diabet Med 1987; 4: 3740.
  • 6
    Saiki O, Negoro S, Tsuyuguchi I, Yamamura Y. Depressed immunological defence mechanisms in mice with experimentally induced diabetes. Infect Immun 1980; 28: 12731.
  • 7
    Flynn JL, Chan J. Immunology of tuberculosis. Annu Rev Immunol 2001; 19: 93129.
  • 8
    Chan J, Xing Y, Magliozzo RS, Bloom BR. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med 1992; 175: 111122.
  • 9
    Trinchieri G. Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv Immunol 1998; 70: 83243.
  • 10
    Serbina NV, Flynn JL. Early emergence of CD8+ T cells primed for production of type 1 cytokines in the lungs of Mycobacterium tuberculosis-infected mice. Infect Immun 1999; 67: 39808.
  • 11
    Serbina NV, Liu CC, Scanga CA, Flynn JL. CD8+ CTL from lungs of Mycobacterium tuberculosis-infected mice express perforin in vivo and lyse infected macrophages. J Immunol 2000; 165: 35363.
  • 12
    Lazarevic V, Flynn J. CD8+ T cells in tuberculosis. Am J Respir Crit Care Med 2002; 166: 111621.
  • 13
    Samten B, Wizel B, Shams H et al. CD40 ligand trimer enhances the response of CD8+ T cells to Mycobacterium tuberculosis. J Immunol 2003; 170: 31806.
  • 14
    Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 1993; 178: 224954.
  • 15
    Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 1993; 178: 22437.
  • 16
    Cooper AM, Magram J, Ferrante J, Orme IM. Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with mycobacterium tuberculosis. J Exp Med 1997; 186: 3945.
  • 17
    Kinjo Y, Kawakami K, Uezu K et al. Contribution of IL-18 to Th1 response and host defense against infection by Mycobacterium tuberculosis: a comparative study with IL-12p40. J Immunol 2002; 169: 3239.
  • 18
    Ottenhoff TH, Kumararatne D, Casanova JL. Novel human immunodeficiencies reveal the essential role of type-I cytokines in immunity to intracellular bacteria. Immunol Today 1998; 19: 4914.
  • 19
    North RJ. Mice incapable of making IL-4 or IL-10 display normal resistance to infection with Mycobacterium tuberculosis. Clin Exp Immunol 1998; 113: 558.
  • 20
    Tsukaguchi K, Okamura H, Ikuno M et al. The relation between diabetes mellitus and IFN-gamma, IL-12 and IL-10 productions by CD4+ alpha beta T cells and monocytes in patients with pulmonary tuberculosis. Kekkaku 1997; 72: 61722. (in Japanese)
  • 21
    Tsukaguchi K, Okamura H, Matsuzawa K, Tamura M, Miyazaki R, Tamaki S, Kimura H. Longitudinal assessment of IFN-gamma production in patients with pulmonary tuberculosis complicated with diabetes mellitus. Kekkaku 2002; 77: 40913. (in Japanese)
  • 22
    Kawakami K, Tohyama M, Qifeng X, Saito A. Expression of cytokines and inducible nitric oxide synthase mRNA in the lungs of mice infected with Cryptococcus neoformans: effects of interleukin-12. Infect Immun 1997; 65: 130712.
  • 23
    Stuehr DJ, Nathan CF. Nitric oxide: a macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 1989; 169: 154355.
  • 24
    Shiloh MU, Nathan CF. Reactive nitrogen intermediates and the pathogenesis of Salmonella and Mycobacteria. Curr Opin Microbiol 2000; 3: 3542.
  • 25
    Flynn JL, Scanga CA, Tanaka KE, Chan J. Effects of aminoguanidine on latent murine tuberculosis. J Immunol 1998; 160: 1796803.
  • 26
    Ehlers S, Benini J, Held HD, Roeck C, Alber G, Uhlig S. Alphabeta T cell receptor-positive cells and interferon-gamma, but not inducible nitric oxide synthase, are critical for granuloma necrosis in a mouse model of mycobacteria-induced pulmonary immunopathology. J Exp Med 2001; 194: 184759.
  • 27
    MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol 1997; 15: 32350.
  • 28
    Mosci P, Vecchiarelli A, Cenci E, Puliti M, Bistoni F. Low-dose streptozotocin-induced diabetes in mice. I. Course of Candida albicans infection. Cell Immunol 1993; 150: 2735.
  • 29
    Mencacci A, Romani L, Mosci P, Cenci E, Tonnetti L, Vecchiarelli A, Bistoni F. Low-dose streptozotocin-induced diabetes in mice. II. Susceptibility to Candida albicans infection correlates with the induction of a biased Th2-like antifungal response. Cell Immunol 1993; 150: 3644.
  • 30
    Means TK, Jones BW, Schromm AB et al. Differential effects of a Toll-like receptor antagonist on Mycobacterium tuberculosis-induced macrophage responses. J Immunol 2001; 166: 407482.
  • 31
    Reiling N, Holscher C, Fehrenbach A, Kroger S, Kirschning CJ, Goyert S, Ehlers S. Cutting edge. Toll-like receptor (TLR) 2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J Immunol 2002; 169: 34804.
  • 32
    Heldwein KA, Fenton MJ. The role of Toll-like receptors in immunity against mycobacterial infection. Microbes Infect 2002; 4: 93744.
  • 33
    Hill JR, Kwon G, Marshall CA, McDaniel ML. Hyperglycemic levels of glucose inhibit interleukin 1 release from RAW 264.7 murine macrophages by activation of protein kinase C. J Biol Chem 1998; 273: 330813.
  • 34
    Tseng CC, Hattori Y, Kasai K, Nakanishi N, Shimoda S. Decreased production of nitric oxide by LPS-treated J774 macrophages in high-glucose medium. Life Sci 1997; 60: 99106.
  • 35
    Muniyappa R, Srinivas PR, Ram JL, Walsh MF, Sowers JR. Calcium and protein kinase C mediate high-glucose-induced inhibition of inducible nitric oxide synthase in vascular smooth muscle cells. Hypertension 1998; 31: 28995.
  • 36
    Mosmann TR, Sad S. The expanding universe of T-cell subsets. Th1, Th2 More Immunol Today 1996; 17: 13846.
  • 37
    Kopf M, Brombacher F, Kohler G et al. IL-4-deficient Balb/c mice resist infection with Leishmania major. J Exp Med 1996; 184: 112736.
  • 38
    Padigel UM, Alexander J, Farrell JP. The role of interleukin-10 in susceptibility of BALB/c mice to infection with Leishmania mexicana and Leishmania amazonensis. J Immunol 2003; 171: 370510.
  • 39
    Decken K, Kohler G, Palmer-Lehmann K, Wunderlin A, Mattner F, Magram J, Gately MK, Alber G. Interleukin-12 is essential for a protective Th1 response in mice infected with Cryptococcus neoformans. Infect Immun 1998; 66: 49945000.
  • 40
    Blackstock R, Buchanan KL, Adesina AM, Murphy JW. Differential regulation of immune responses by highly and weakly virulent Cryptococcus neoformans isolates. Infect Immun 1999; 67: 36019.
  • 41
    Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM. Reciprocal expression of interferon-gamma or interleukin-4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J Exp Med 1989; 169: 5972.
  • 42
    Heinzel FP, Ahmed F, Hujer AM, Rerko RM. Immunoregulation of murine leishmaniasis by interleukin-12. Res Immunol 1995; 146: 57581.