• 1
    Hart CA, Beeching NJ, Duerden BI. Tuberculosis into the next century. J Med Microbiol 1996; 44: 134.
  • 2
    Falkinham JO 3rd. Epidemiology of infection by nontuberculous mycobacteria. Clin Microbiol Rev 1996; 9: 177215.
  • 3
    Ellner JJ. Suppressor adherent cells in human tuberculosis. J Immunol 1978; 121: 25739.
  • 4
    Edwards III CK, Hedegaard HB, Zlotnik A, Gangadharam PR, Johnston RB Jr, Pabst MJ. Chronic infection due to Mycobacterium intracellulare in mice: association with macrophage release of prostaglandin E2 and reversal by injection of indomethacin, muramyl dipeptide, or interferon-γ. J Immunol 1986; 136: 18207.
  • 5
    Turcotte R, Lemieux S. Mechanisms of action of Mycobacterium bovis BCG-induced suppressor cells in mitogen-induced blastogenesis. Infect Immun 1982; 36: 26370.
  • 6
    Edwards D, Kirkpatrick CH. The immunology of mycobacterial diseases. Am Rev Respir Dis 1986; 134: 106271.
  • 7
    VanHeyningen TK, Collins HL, Russell DG. IL-6 produced by macrophages infected with Mycobacterium species suppresses T cell responses. J Immunol 1997; 158: 3307.
  • 8
    Tomioka H. Immunosuppressive macrophages. Clin Immunol (Tokyo) 2000; 33: 2936.
  • 9
    Tomioka H, Saito H, Yamada Y. Characteristics of immunosuppressive macrophages induced in spleen cells by Mycobacterium avium complex infections in mice. J General Microbiol 1990; 136: 96573.
  • 10
    Tomioka H, Saito H. Characterization of immunosuppressive functions of murine peritoneal macrophages induced with various agents. J Leukoc Biol 1992; 51: 2431.
  • 11
    Tomioka H, Sato K, Maw WW, Saito H. The role of tumor necrosis factor, interferon-γ, transforming growth factor-β, and nitric oxide in the expression of immunosuppressive functions of splenic macrophages induced by Mycobacterium avium complex infection. J Leukoc Biol 1995; 58: 70412.
  • 12
    Tomioka H, Kishimoto T, Maw WW. Phospholipids and reactive nitrogen intermediates collaborate in expression of the T cell mitogenesis-inhibitory activity of immunosuppressive macrophages induced in mycobacterial infection. Clin Exp Immunol 1996; 103: 21925.
  • 13
    Maw WW, Shimizu T, Sato K, Tomioka H. Further study on the roles of the effector molecules of immunosuppressive macrophages induced by mycobacterial infection in expression of their suppressor function against mitogen-stimulated T cell proliferation. Clin Exp Immunol 1997; 108: 2633.
  • 14
    Shimizu T, Sano C, Tomioka H. The role of B7 molecules in the cell contact-mediated suppression of T cell mitogenesis by immunosuppressive macrophages induced with mycobacterial infection. Clin Exp Immunol 2004; 135: 3739.
  • 15
    Ogasawara K, Tomioka H, Shimizu T, Sano C, Kawauchi H, Sato K. Profiles of cell–to–cell interaction of Mycobacterium intracellulare- induced immunosuppressive macrophages with target T cells in terms of suppressor signal transmission. Clin Exp Immunol 2002; 129: 27280.
  • 16
    Alleva DG, Askew D, Burger CJ, Elgert KD. Fibrosarcoma-induced increase in macrophage tumor necrosis factor alpha synthesis suppresses T cell responses. J Leukoc Biol 1993; 54: 15260.
  • 17
    Alleva DG, Burger CJ, Elgert KD. Tumor growth increases Ia macrophage synthesis of tumor necrosis factor-α and prostaglandin E2: changes in macrophage suppressor activity. J Leukoc Biol 1993; 53: 5508.
  • 18
    Kono K, Salazar-Onfray F, Petersson M et al. Hydrogen peroxide secreted by tumor-derived macrophages down-modulates signal- transducing zeta molecules and inhibits tumor-specific T cell-and natural killer cell-mediated cytotoxicity. Eur J Immunol 1996; 26: 130813.
  • 19
    Flynn JN, Sileghem M. The role of the macrophage in induction of immunosuppression in Trypanosoma congolense-infected cattle. Immunology 1991; 74: 3106.
  • 20
    Schleifer KW, Mansfield JM. Suppressor macrophages in African trypanosomiasis inhibit T cell proliferative responses by nitric oxide and prostaglandins. J Immunol 1993; 151: 5492503.
  • 21
    Mabbott NA, Sutherland IA, Sternberg JM. Suppressor macrophages in Trypanosoma brucei infection: nitric oxide is related to both suppressive activity and lifespan in vivo. Parasite Immunol 1995; 17: 14350.
  • 22
    Khan IA, Matsuura T, Kasper LH. IL-10 mediates immunosuppression following primary infection with Toxoplasma gondii in mice. Parasite Immunol 1995; 17: 18595.
  • 23
    Atochina O, Daly-Engel T, Piskorska D, McGuire E, Harn DA. A schistosome-expressed immunomodulatory glycoconjugate expands peritoneal Gr1+ macrophages that suppress naive CD4+ T cell proliferation via an IFN-γ and nitric oxide-dependent mechanism. J Immunol 2001; 167: 4293302.
  • 24
    Evans R. Regulation of T- and B lymphocyte responses to mitogens by tumor-associated macrophages: the dependency on the stage of tumor growth. J Leukoc Biol 1984; 35: 54959.
  • 25
    Mills CD. Molecular basis of ‘suppressor’ macrophages. Arginine metabolism via the nitric oxide synthetase pathway. J Immunol 1991; 146: 271923.
  • 26
    Medot-Pirenne M, Heilman MJ, Saxena M, McDermott PE, Mills CD. Augmentation of an antitumor CTL response in vivo by inhibition of suppressor macrophage nitric oxide. J Immunol 1999; 163: 587782.
  • 27
    Tao X, Stout RD. T cell-mediated cognate signaling of nitric oxide production by macrophages. Requirements for macrophage activation by plasma membranes isolated from T cells. Eur J Immunol 1993; 23: 291621.
  • 28
    Tomioka H, Maw WW, Sato K, Saito H. The role of tumour necrosis factor-alpha in combination with interferon-gamma or interleukin-1 in the induction of immunosuppressive macrophages because of Mycobacterium avium complex infection. Immunology 1996; 88: 617.
  • 29
    Akaki T, Tomioka H, Shimizu T, Dekio S, Sato K. Comparative roles of free fatty acids with reactive nitrogen intermediates and reactive oxygen intermediates in expression of the anti-microbial activity of macrophages against Mycobacterium tuberculosis. Clin Exp Immunol 2000; 121: 30210.
  • 30
    Akaki T, Sato K, Shimizu T, Sano C, Kajitani H, Dekio S, Tomioka H. Effector molecules in expression of the antimicrobial activity of macrophages against Mycobacterium avium complex: roles of reactive nitrogen intermediates, reactive oxygen intermediates, and free fatty acids. J Leukoc Biol 1997; 62: 795804.
  • 31
    Yamada Y, Saito H, Tomioka H, Jidoi J. Susceptibility of micro- organisms to active oxygen species: sensitivity to the xanthine-oxidase-mediated antimicrobial system. J General Microbiol 1987; 133: 200714.
  • 32
    Yamada Y, Saito H, Tomioka H, Jidoi J. Relationship between the susceptibility of various bacteria to active oxygen species and to intracellular killing by macrophages. J General Microbiol 1987; 133: 201521.
  • 33
    Girotti M, Evans JH, Burke D, Leslie CC. Cytosolic phospholipase A2 translocates to forming phagosomes during phagocytosis of zymosan in macrophages. J Biol Chem 2004; 279: 1911321.
  • 34
    Johnson CM, Cooper AM, Frank AA, Bonorino CB, Wysoki LJ, Orme IM. Mycobacterium tuberculosis aerogenic rechallenge infections in B cell-deficient mice. Tuber Lung Dis 1997; 78: 25761.
  • 35
    Vordermeier HM, Venkataprasad N, Harris DP, Ivanyi J. Increase of tuberculous infection in the organs of B cell-deficient mice. Clin Exp Immunol 1996; 106: 3126.
  • 36
    Bosio CM, Gardner D, Elkins KL. Infection of B cell-deficient mice with CDC 1551, a clinical isolate of Mycobacterium tuberculosis: delay in dissemination and development of lung pathology. J Immunol 2000; 164: 641725.
  • 37
    Lombardi G, Del Gallo F, Vismara D, Piccolella E, De Martino C, Garzelli C, Puglisi C, Colizzi V. Epstein-Barr virus-transformed B cells process and present Mycobacterium tuberculosis particulate antigens to T-cell clones. Cell Immunol 1987; 107: 28192.
  • 38
    Tobian AA, Harding CV, Canaday DH. Mycobacterium tuberculosis heat shock fusion protein enhances class I MHC cross-processing and -presentation by B lymphocytes. J Immunol 2005; 174: 520914.
  • 39
    Nicotera P, Brune B, Bagetta G. Nitric oxide: inducer or suppressor of apoptosis? Trends Pharmacol Sci 1997; 18: 18990.
  • 40
    Niedbala W, Wei XQ, Campbell C, Thomson D, Komai-Koma M, Liew FY. Nitric oxide preferentially induces type 1 T cell differentiation by selectively up-regulating IL-12 receptor beta 2 expression via cGMP. Proc Natl Acad Sci USA 2002; 99: 1618691.