• 1
    Rother RP, Mojcik CF, McCroskery EW. Inhibition of terminal complement. a novel therapeutic approach for the treatment of systemic lupus erythematosus. Lupus 2004; 13:32834.
  • 2
    Chiu YY, Nisihara RM, Wurzner R, Kirschfink M, Messias-Reason IJ. SC5b-9 is the most sensitive marker in assessing disease activity in Brazilian SLE patients. J Invest Allergol Clin Immunol 1998; 8:23944.
  • 3
    Fishelson Z, Attali G, Mevorach D. Complement and apoptosis. Mol Immunol 2001; 38:20719.
  • 4
    Bohana-Kashtan O, Ziporen L, Donin N, Kraus S, Fishelson Z. Cell signals transduced by complement. Mol Immunol 2004; 41:58397.
  • 5
    Choi NH, Nakano Y, Tobe T, Mazda T, Tomita M. Incorporation of SP-40,40 into the soluble membrane attack complex (SMAC, SC5b−9) of complement. Int Immunol 1990; 2:4137.
  • 6
    Bhakdi S, Kaflein R, Halstensen TS, Hugo F, Preissner KT, Mollnes TE. Complement S-protein (vitronectin) is associated with cytolytic membrane-bound C5b−9 complexes. Clin Exp Immunol 1988; 74:45964.
  • 7
    Tschopp J, Chonn A, Hertig S, French LE. Clusterin, the human apolipoprotein and complement inhibitor, binds to complement C7, C8 beta, and the b domain of C9. J Immunol 1993; 151:215965.
  • 8
    Peitsch MC, Amiguet P, Guy R, Brunner J, Maizel JV Jr, Tschopp J. Localization and molecular modelling of the membrane-inserted domain of the ninth component of human complement and perforin. Mol Immunol 1990; 27:589602.
  • 9
    Suzuki S, Oldberg A, Hayman EG, Pierschbacher MD, Ruoslahti E. Complete amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell attachment sites in vitronectin and fibronectin. EMBO J 1985; 4:251924.
  • 10
    Milis L, Morris CA, Sheehan MC, Charlesworth JA, Pussell BA. Vitronectin-mediated inhibition of complement: evidence for different binding sites for C5b−7 and C9. Clin Exp Immunol 1993; 92:1149.
  • 11
    Murphy BF, Davies DJ, Morrow W, D’Apice AJ. Localization of terminal complement components S-protein and SP-40,40 in renal biopsies. Pathology 1989; 21:2758.
  • 12
    Chauhan AK, Moore TL. Membrane attack complex (MAC) in rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Arthritis Rheum 2004; 50:S518.
  • 13
    Tak PP, Spaeny-Dekking L, Kraan MC, Breedveld FC, Froelich CJ, Hack CE. The levels of soluble granzyme A and B are elevated in plasma and synovial fluid of patients with rheumatoid arthritis (RA). Clin Exp Immunol 1999; 116:36670.
  • 14
    Smeets TJ, Kraan MC, Galjaard S, Youssef PP, Smith MD, Tak PP. Analysis of the cell infiltrate and expression of matrix metalloproteinases and granzyme B in paired synovial biopsy specimens from the cartilage–pannus junction in patients with RA. Ann Rheum Dis 2001; 60:5615.
  • 15
    Buzza MS, Zamurs L, Sun J et al. Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin. J Biol Chem 2005; 280:2354958.
  • 16
    Nauta AJ, Daha MR, Van De Tijsma OWB, Tedesco F, Roos A. The membrane attack complex of complement induces caspase activation and apoptosis. Eur J Immunol 2002; 32:78392.
  • 17
    Murphy BF, Kirszbaum L, Walker ID, D’Apice AJ. SP-40,40, a newly identified normal human serum protein found in the SC5b−9 complex of complement and in the immune deposits in glomerulonephritis. J Clin Invest 1988; 81:185864.
  • 18
    Yasuda K. [Terminal complement complex (TCC) levels in urine in patients with renal diseases]. Hokkaido Igaku Zasshi 2001; 76:7184.
  • 19
    Ichida S, Yuzawa Y, Okada H, Yoshioka K, Matsuo S. Localization of the complement regulatory proteins in the normal human kidney. Kidney Int 1994; 46:8996.
  • 20
    Trouw LA, Groeneveld TW, Seelen MA et al. Anti-C1q autoantibodies deposit in glomeruli but are only pathogenic in combination with glomerular C1q-containing immune complexes. J Clin Invest 2004; 114:67988.
  • 21
    Koffler D, Biesecker G, Noble B, Andres GA, Martinez-Hernandez A. Localization of the membrane attack complex (MAC) in experimental immune complex glomerulonephritis. J Exp Med 1983; 157:1885905.
  • 22
    French LE, Tschopp J, Schifferli JA. Clusterin in renal tissue: preferential localization with the terminal complement complex and immunoglobulin deposits in glomeruli. Clin Exp Immunol 1992; 88:38993.
  • 23
    Ogawa T, Yorioka N, Yamakido M. Immunohistochemical studies of vitronectin, C5b-9, and vitronectin receptor in membranous nephropathy. Nephron 1994; 68:8796.
  • 24
    Ruoslahti E, Pierschbacher MD. Arg–Gly–Asp: a versatile cell recognition signal. Cell 1986; 44:5178.
  • 25
    Declerck PJ, De Mol M, Alessi MC et al. Purification and characterization of a plasminogen activator inhibitor 1 binding protein from human plasma. Identification as a multimeric form of S protein (vitronectin). J Biol Chem 1988; 263:1545461.
  • 26
    Hogasen K, Mollnes TE, Brandtzaeg P. Low levels of vitronectin and clusterin in acute meningococcal disease are closely associated with formation of the terminal-complement complex and the vitronectin–thrombin–antithrombin complex. Infect Immun 1994; 62:487480.
  • 27
    Spaeny-Dekking EH, Hanna WL, Wolbink AM et al. Extracellular granzymes A and B in humans: detection of native species during CTL responses in vitro and in vivo. J Immunol 1998; 160:361016.
  • 28
    Seiffert D, Smith JW. The cell adhesion domain in plasma vitronectin is cryptic. J Biol Chem 1997; 272:1370510.
  • 29
    Hogasen K, Mollnes TE, Harboe M. Heparin-binding properties of vitronectin are linked to complex formation as illustrated by in vitro polymerization and binding to the terminal complement complex. J Biol Chem 1992; 267:2307682.
  • 30
    Biesecker G. The complement SC5b−9 complex mediates cell adhesion through a vitronectin receptor. J Immunol 1990; 145:20914.
  • 31
    Laine RO, Morgan BP, Esser AF. Comparison between complement and melittin hemolysis: anti-melittin antibodies inhibit complement lysis. Biochemistry 1988; 27:530814.
  • 32
    Dobrina A, Pausa M, Fischetti F et al. Cytolytically inactive terminal complement complex causes transendothelial migration of polymorphonuclear leukocytes in vitro and in vivo. Blood 2002; 99:18592.
  • 33
    Poon S, Easterbrook-Smith SB, Rybchyn MS, Carver JA, Wilson MR. Clusterin is an ATP-independent chaperone with very broad substrate specificity that stabilizes stressed proteins in a folding-competent state. Biochemistry 2000; 39:1595360.