SEARCH

SEARCH BY CITATION

References

  • 1
    Fernandez LE, Alonso DF, Gomez DE, Vazquez AM. Ganglioside-based vaccines and anti-idiotype antibodies for active immunotherapy against cancer. Expert Rev Vaccines 2003; 2:81723.
  • 2
    Bitton RJ, Guthmann MD, Gabri MR et al. Cancer vaccines: an update with special focus on ganglioside antigens. Oncol Rep 2002; 9:26776 [Review].
  • 3
    Estevez F, Carr A, Solorzano L et al. Enhancement of the immune response to poorly immunogenic gangliosides after incorporation into very small size proteoliposomes (VSSP). Vaccine 1999; 18:1907.
  • 4
    Alonso DF, Gabri MR, Guthmann MD, Fainboim L, Gomez DE. A novel hydrophobized GM3 ganglioside/Neisseria meningitidis outer-membrane-protein complex vaccine induces tumor protection in B16 murine melanoma. Int J Oncol 1999; 15:5966.
  • 5
    Carr A, Mazorra Z, Alonso DF et al. A purified GM3 ganglioside conjugated vaccine induces specific, adjuvant-dependent and non-transient antitumour activity against B16 mouse melanoma in vitro and in vivo. Melanoma Res 2001; 11:21927.
  • 6
    Guthmann MD, Bitton RJ, Carnero AJ et al. Active specific immunotherapy of melanoma with a GM3 ganglioside-based vaccine: a report on safety and immunogenicity. J Immunother 2004; 27:44251.
  • 7
    Brewer JM. (How) do aluminium adjuvants work? Immunol Lett 2006; 102:105.
  • 8
    Mesa C, Fernandez LE. Challenges facing adjuvants for cancer immunotherapy. Immunol Cell Biol 2004; 82:64450.
    Direct Link:
  • 9
    Lamm DL, McGee WR, Hale K. Bladder cancer: current optimal intravesical treatment. Urol Nurs 2005; 25:3236.
  • 10
    Fujimoto T, Duda RB, Szilvasi A, Chen X, Mai M, O'Donnell MA. Streptococcal preparation OK-432 is a potent inducer of IL-12 and a T helper cell 1 dominant state. J Immunol 1997; 158:561926.
  • 11
    Kuroki H, Morisaki T, Matsumoto K et al. Streptococcal preparation OK-432: a new maturation factor of monocyte-derived dendritic cells for clinical use. Cancer Immunol Immunother 2003; 52:5618.
  • 12
    Miyagi K, Kawakami K, Kinjo Y et al. CpG oligodeoxynucleotides promote the host protective response against infection with Cryptococcus neoformans through induction of interferon-gamma production by CD4+ T cells. Clin Exp Immunol 2005; 140:2209.
  • 13
    Pulendran B, Ahmed R. Translating innate immunity into immunological memory: implications for vaccine development. Cell 2006; 124:84963.
  • 14
    Okamoto M, Ohe G, Oshikawa T et al. Enhancement of anti-cancer immunity by a lipoteichoic-acid-related molecule isolated from a penicillin-killed group A Streptococcus. Cancer Immunol Immunother 2001; 50:40816.
  • 15
    Jeannin P, Magistrelli G, Goetsch L et al. Outer membrane protein A (OmpA): a new pathogen-associated molecular pattern that interacts with antigen presenting cells-impact on vaccine strategies. Vaccine 2002; 20 (Suppl. 4):A237.
  • 16
    Jeannin P, Magistrelli G, Herbault N et al. Outer membrane protein A renders dendritic cells and macrophages responsive to CCL21 and triggers dendritic cell migration to secondary lymphoid organs. Eur J Immunol 2003; 33:32633.
  • 17
    Massari P, Ram S, Macleod H, Wetzler LM. The role of porins in neisserial pathogenesis and immunity. Trends Microbiol 2003; 11:8793.
  • 18
    Lin WJ, Yeh WC. Implication of Toll-like receptor and tumor necrosis factor alpha signaling in septic shock. Shock 2005; 24:2069.
  • 19
    Hennemann B, Beckmann G, Eichelmann A, Rehm A, Andreesen R. Phase I trial of adoptive immunotherapy of cancer patients using monocyte-derived macrophages activated with interferon gamma and lipopolysaccharide. Cancer Immunol Immunother 1998; 45:2506.
  • 20
    Mesa C, De Leon J, Fernandez LE. Very small size proteoliposomes derived from Neisseria meningitidis: an effective adjuvant for generation of CTL responses to peptide and protein antigens. Vaccine 2006; 24:26929.
  • 21
    Mesa C, De Leon J, Rigley K, Fernandez LE. Very small size proteoliposomes derived from Neisseria meningitidis: an effective adjuvant for Th1 induction and dendritic cell activation. Vaccine 2004; 22:304552.
  • 22
    Vazquez AM, Alfonso M, Lanne B et al. Generation of a murine monoclonal antibody specific for N-glycolylneuraminic acid-containing gangliosides that also recognizes sulfated glycolipids. Hybridoma 1995; 14:5516.
  • 23
    Kanda N. Gangliosides GD1a and GM3 induce interleukin-10 production by human T cells. Biochem Biophys Res Commun 1999; 256:414.
  • 24
    Torrens I, Mendoza O, Batte A et al. Immunotherapy with CTL peptide and VSSP eradicated established human papillomavirus (HPV) type 16, E7-expressing tumors. Vaccine 2005; 23:576874.
  • 25
    Mukhopadhyay S, Peiser L, Gordon S. Activation of murine macrophages by Neisseria meningitidis and IFN-gamma in vitro: distinct roles of class A scavenger and Toll-like pattern recognition receptors in selective modulation of surface phenotype. J Leukoc Biol 2004; 76:57784.
  • 26
    Krug A, Rothenfusser S, Selinger S et al. CpG-A oligonucleotides induce a monocyte-derived dendritic cell-like phenotype that preferentially activates CD8 T cells. J Immunol 2003; 170:346877.
  • 27
    Bauer M, Redecke V, Ellwart JW et al. Bacterial CpG-DNA triggers activation and maturation of human CD11c–, CD123+ dendritic cells. J Immunol 2001; 166:50007.
  • 28
    Wagner TL, Ahonen CL, Couture AM et al. Modulation of TH1 and TH2 cytokine production with the immune response modifiers, R-848 and imiquimod. Cell Immunol 1999; 191:109.
  • 29
    Turcanu V, Hirst TR, Williams NA. Modulation of human monocytes by Escherichia coli heat-labile enterotoxin B-subunit; altered cytokine production and its functional consequences. Immunology 2002; 106:31625.
  • 30
    Mikloska Z, Ruckholdt M, Ghadiminejad I, Dunckley H, Denis M, Cunningham AL. Monophosphoryl lipid A and QS21 increase CD8 T lymphocyte cytotoxicity to herpes simplex virus-2 infected cell proteins 4 and 27 through IFN-gamma and IL-12 production. J Immunol 2000; 164:516776.
  • 31
    Germann T, Rude E, Mattner F, Gately MK. The IL-12 p40 homodimer as a specific antagonist of the IL-12 heterodimer. Immunol Today 1995; 16:5001.
  • 32
    Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003; 3:13346.
  • 33
    Prebeck S, Kirschning C, Dürr S et al. Predominant role of Toll-like receptor 2 versus 4 in Chlamydia pneumoniae-induced activation of dendritic cells. J Immunol 2001; 167:331623.
  • 34
    Giambartolomei GH, Zwerdling A, Cassataro J, Bruno L, Fossati CA, Philipp MT. Lipoproteins, not lipopolysaccharide, are the key mediators of the proinflammatory response elicited by heat-killed Brucella abortus. J Immunol 2004; 173:463542.
  • 35
    Nakahara T, Urabe K, Fukagawa S et al. Engagement of human monocyte-derived dendritic cells into interleukin (IL)-12 producers by IL-1beta + interferon (IFN)-gamma. Clin Exp Immunol 2005; 139:47682.
  • 36
    Feinberg J, Fieschi C, Doffinger R et al. Bacillus Calmette–Guérin triggers the IL-12/IFN-gamma axis by an IRAK-4- and NEMO-dependent, non-cognate interaction between monocytes, NK, and T lymphocytes. Eur J Immunol 2004; 34:327684.
  • 37
    Matsumoto H, Suzuki K, Tsuyuguchi K et al. Interleukin-12 gene expression in human monocyte-derived macrophages stimulated with Mycobacterium bovis BCG: cytokine regulation and effect of NK cells. Infect Immun 1997; 65:440510.
  • 38
    Sprong T, Stikkelbroeck N, Van Der Ley P et al. Contributions of Neisseria meningitidis LPS and non-LPS to proinflammatory cytokine response. J Leukoc Biol 2001; 70:2838.
  • 39
    Cavaillon JM, Haeffner-Cavaillon N. Polymyxin-B inhibition of LPS-induced interleukin-1 secretion by human monocytes is dependent upon the LPS origin. Mol Immunol 1986; 23:9659.
  • 40
    Baldwin G, Alpert G, Caputo GL et al. Effect of polymyxin B on experimental shock from meningococcal and Escherichia coli endotoxins. J Infect Dis 1991; 164:5429.
  • 41
    Cavaillon JM, Fitting C, David B. Presence of interleukin 3-like activity in the supernatants of lipopolysaccharide-stimulated mouse splenocytes. Biochem Biophys Res Commun 1986; 138:13227.
  • 42
    Dunn KL, Virji M, Moxon ER. Investigations into the molecular basis of meningococcal toxicity for human endothelial and epithelial cells: the synergistic effect of LPS and pili. Microb Pathog 1995; 18:8196.
  • 43
    Mirlashari MR, Lyberg T. Expression and involvement of Toll-like receptors (TLR) 2, TLR4, and CD14 in monocyte TNF-alpha production induced by lipopolysaccharides from Neisseria meningitidis. Med Sci Monit 2003; 9:BR31624.
  • 44
    Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003; 21:33576.
  • 45
    Pridmore AC, Wyllie DH, Abdillahi F et al. A lipopolysaccharide-deficient mutant of Neisseria meningitidis elicits attenuated cytokine release by human macrophages and signals via Toll-like receptor (TLR) 2 but not via TLR4/MD2. J Infect Dis 2001; 183:8996.
  • 46
    Ingalls RR, Lien E, Golenbock DT. Membrane-associated proteins of a lipopolysaccharide-deficient mutant of Neisseria meningitidis activate the inflammatory response through Toll-like receptor 2. Infect Immun 2001; 69:22306.
  • 47
    Massari P, Henneke P, Ho Y, Latz E, Golenbock DT, Wetzler LM. Immune stimulation by neisserial porins is Toll-like receptor 2 and MyD88 dependent. J Immunol 2002; 168:15337.
  • 48
    Saikh KU, Khan AS, Kissner T, Ulrich RG. IL-15-induced conversion of monocytes to mature dendritic cells. Clin Exp Immunol 2001; 126:44755.
  • 49
    Oshikawa T, Okamoto M, Tano T et al. Antitumor effect of OK-432-derived DNA. one of the active constituents of OK-432, a streptococcal immunotherapeutic agent. J Immunother 2006; 29:14350.
  • 50
    Okamoto M, Ohe G, Oshikawa T et al. Induction of Th1-type cytokines by lipoteichoic acid-related preparation isolated from OK-432, a penicillin-killed streptococcal agent. Immunopharmacology 2000; 49:36376.
  • 51
    Okamoto M, Oshikawa T, Ohe G et al. Comparison of cytokine-inducing activity in a lipoteichoic acid-related molecule isolated from a penicillin-killed group A Streptococcus and from untreated bacteria. Int Immunopharmacol 2001; 1:195768.
  • 52
    Kim KD, Lee HG, Kim JK et al. Enhanced antigen-presenting activity and tumour necrosis factor-alpha-independent activation of dendritic cells following treatment with Mycobacterium bovis bacillus Calmette–Guérin. Immunology 1999; 97:62633.
  • 53
    Liu E, Law HK, Lau YL. BCG promotes cord blood monocyte-derived dendritic cell maturation with nuclear Rel-B up-regulation and cytosolic I kappa B alpha and beta degradation. Pediatr Res 2003; 54:10512.
  • 54
    Todate A, Suda T, Kuwata H, Chida K, Nakamura H. Muramyl dipeptide-Lys stimulates the function of human dendritic cells. J Leukoc Biol 2001; 70:7239.
  • 55
    Kanazawa M, Mori Y, Yoshihara K et al. Effect of PSK on the maturation of dendritic cells derived from human peripheral blood monocytes. Immunol Lett 2004; 91:22938.
  • 56
    Rodriguez T, Perez O, Menager N, Ugrinovic S, Bracho G, Mastroeni P. Interactions of proteoliposomes from serogroup B Neisseria meningitidis with bone marrow-derived dendritic cells and macrophages: adjuvant effects and antigen delivery. Vaccine 2005; 23:131221.