• 1
    Kochi A. The global tuberculosis situation and the new control strategy of the World Health Organization. Tubercle 1991; 72:16.
  • 2
    Russell S. The economic burden of illness for households in developing countries: a review of studies focusing on malaria, tuberculosis, and human immunodeficiency virus/acquired immunodeficiency syndrome. Am J Trop Med Hyg 2004; 71 (Suppl 2):14755.
  • 3
    Dye C, Watt CJ, Bleed DM, Hosseini SM, Raviglione MC. Evolution of tuberculosis control and prospects for reducing tuberculosis incidence, prevalence, and deaths globally. JAMA 2005; 293:276775.
  • 4
    Grant AD, Djomand G, De Cock KM. Natural history and spectrum of disease in adults with HIV/AIDS in Africa. Aids 1997; 11 (Suppl B):S4354.
  • 5 (accessed 2 January 2007).
  • 6
    Squire SB, Obasi A, Nhlema-Simwaka B. The Global Plan to Stop TB: a unique opportunity to address poverty and the Millennium Development Goals. Lancet 2006; 367:9557.
  • 7
    Trunz BB, Fine P, Dye C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 2006; 367:117380.
  • 8
    American Thoracic Society (ATS) and the Centers for Disease Control and Prevention (CDC). Targeted tuberculin testing and treatment of latent tuberculosis infection. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. This is a Joint Statement of the American Thoracic Society (ATS) and the Centers for Disease Control and Prevention (CDC). This statement was endorsed by the Council of the Infectious Diseases Society of America (IDSA) September 1999 and the sections of this statement. Am J Respir Crit Care Med 2000; 161:S22147.
  • 9
    Manabe YC, Bishai WR. Latent Mycobacterium tuberculosis-persistence, patience, and winning by waiting. Nat Med 2000; 6:13279.
  • 10
    Cappelli G, Volpe P, Sanduzzi A, Sacchi A, Colizzi V, Mariani F. Human macrophage gamma interferon decreases gene expression but not replication of Mycobacterium tuberculosis: analysis of the host-pathogen reciprocal influence on transcription in a comparison of strains H37Rv and CMT97. Infect Immun 2001; 69:726270.
  • 11
    Monahan IM, Betts J, Banerjee DK, Butcher PD. Differential expression of mycobacterial proteins following phagocytosis by macrophages. Microbiology 2001; 147:45971.
  • 12
    Shi L, Jung YJ, Tyagi S, Gennaro ML, North RJ. Expression of Th1-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence. Proc Natl Acad Sci USA 2003; 100:2416.
  • 13
    Jones BE, Young SM, Antoniskis D, Davidson PT, Kramer F, Barnes PF. Relationship of the manifestations of tuberculosis to CD4 cell counts in patients with human immunodeficiency virus infection. Am Rev Respir Dis 1993; 148:12927.
  • 14
    Barnes PF, Mehra V, Rivoire B, et al. Immunoreactivity of a 10-kDa antigen of Mycobacterium tuberculosis. J Immunol 1992; 148:183540.
  • 15
    Mehra V, Gong JH, Iyer D et al. Immune response to recombinant mycobacterial proteins in patients with tuberculosis infection and disease. J Infect Dis 1996; 174:4314.
  • 16
    Sanchez FO, Rodriguez JI, Agudelo G, Garcia LF. Immune responsiveness and lymphokine production in patients with tuberculosis and healthy controls. Infect Immun 1994; 6:56738.
  • 17
    Newport MJ, Huxley CM, Huston S et al. A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med 1996; 335:19419.
  • 18
    Altare F, Durandy A, Lammas D et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science 1998; 280:14325.
  • 19
    Altare F, Lammas D, Revy P et al. Inherited interleukin 12 deficiency in a child with bacille Calmette–Guerin and Salmonella enteritidis disseminated infection. J Clin Invest 1998; 102:203540.
  • 20
    Dorman SE, Picard C, Lammas D et al. Clinical features of dominant and recessive interferon gamma receptor 1 deficiencies. Lancet 2004; 364:211321.
  • 21
    Muller I, Cobbold SP, Waldmann H, Kaufmann SH. Impaired resistance to Mycobacterium tuberculosis infection after selective in vivo depletion of L3T4+ and Lyt-2+ T cells. Infect Immun 1987; 55:203741.
  • 22
    Orme IM, Collins FM. Protection against Mycobacterium tuberculosis infection by adoptive immunotherapy. Requirement for T cell-deficient recipients. J Exp Med 1983; 158 (1):7483.
  • 23
    Caruso AM, Serbina N, Klein E, Triebold K, Bloom BR, Flynn JL. Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J Immunol 1999; 162:540716.
  • 24
    Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 1993; 178:224954.
  • 25
    Wakeham J, Wang J, Magram J et al. Lack of both types 1 and 2 cytokines, tissue inflammatory responses, and immune protection during pulmonary infection by Mycobacterium bovis bacille Calmette–Guerin in IL-12-deficient mice. J Immunol 1998; 160:610111.
  • 26
    Xing Z, Wang J, Croitoru K, Wakeham J. Protection by CD4 or CD8 T cells against pulmonary Mycobacterium bovis bacillus Calmette–Guerin infection. Infect Immun 1998; 66:553742.
  • 27
    Mogues T, Goodrich ME, Ryan L, LaCourse R, North RJ. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J Exp Med 2001; 193:27180.
  • 28
    Sousa AO, Mazzaccaro RJ, Russell RG, et al. Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice. Proc Natl Acad Sci USA 2000; 97:42048.
  • 29
    Turner J, Gonzalez-Juarrero M, Saunders BM et al. Immunological basis for reactivation of tuberculosis in mice. Infect Immun 2001; 69:326470.
  • 30
    Van Pinxteren LA, Cassidy JP, Smedegaard BH, Agger EM, Andersen P. Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur J Immunol 2000; 30:368998.
  • 31
    Bean AG, Roach DR, Briscoe H et al. Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J Immunol 1999; 162:350411.
  • 32
    Saunders BM, Cooper AM. Restraining mycobacteria: role of granulomas in mycobacterial infections. Immunol Cell Biol 2000; 78:33441.
  • 33
    Leal IS, Florido M, Andersen P, Appelberg R. Interleukin-6 regulates the phenotype of the immune response to a tuberculosis subunit vaccine. Immunology 2001; 103:37581.
  • 34
    Maeurer MJ, Trinder P, Hommel G et al. Interleukin-7 or interleukin-15 enhances survival of Mycobacterium tuberculosis-infected mice. Infect Immun 2000; 68:296270.
  • 35
    Baumann S, Eddine AN, Kaufmann SH. Progress in tuberculosis vaccine development. Curr Opin Immunol 2006; 18:43848.
  • 36
    North RJ. Mice incapable of making IL-4 or IL-10 display normal resistance to infection with Mycobacterium tuberculosis. Clin Exp Immunol 1998; 113:558.
  • 37
    Turner J, Frank AA, Brooks JV, Gonzalez-Juarrero M, Orme IM. The progression of chronic tuberculosis in the mouse does not require the participation of B lymphocytes or interleukin-4. Exp Gerontol 2001; 36:53745.
  • 38
    Jung YJ, Ryan L, LaCourse R, North RJ. Increased interleukin-10 expression is not responsible for failure of T helper 1 immunity to resolve airborne Mycobacterium tuberculosis infection in mice. Immunology 2003; 109:2959.
  • 39
    Turner J, Gonzalez-Juarrero M, Ellis DL et al. In vivo IL-10 production reactivates chronic pulmonary tuberculosis in C57BL/6 mice. J Immunol 2002; 169:634351.
  • 40
    Allen SS, Cassone L, Lasco TM, McMurray DN. Effect of neutralizing transforming growth factor beta1 on the immune response against Mycobacterium tuberculosis in guinea pigs. Infect Immun 2004; 72:135863.
  • 41
    Guyot-Revol V, Innes JA, Hackforth S, Hinks T, Lalvani A. Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am J Respir Crit Care Med 2006; 173:80310.
  • 42
    Bonecini-Almeida MG, Ho JL, Boechat N et al. Down-modulation of lung immune responses by interleukin-10 and transforming growth factor beta (TGF-beta) and analysis of TGF-beta receptors I and II in active tuberculosis. Infect Immun 2004; 72:262834.
  • 43
    Gardam MA, Keystone EC, Menzies R et al. Anti-tumour necrosis factor agents and tuberculosis risk: mechanisms of action and clinical management. Lancet Infect Dis 2003; 3:14855.
  • 44
    Huebner RE, Schein MF, Bass JB Jr. The tuberculin skin test. Clin Infect Dis 1993; 17:96875.
  • 45
    Cole ST, Brosch R, Parkhill J et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998; 39:53744.
  • 46
    Behr MA, Wilson MA, Gill WP et al. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 1999; 284:15203.
  • 47
    Pai M, Kalantri S, Dheda K. New tools and emerging technologies for the diagnosis of tuberculosis: part I. Latent tuberculosis. Expert Rev Mol Diagn 2006; 6:41322.
  • 48
    Demissie A, Abebe M, Aseffa A et al. Healthy individuals that control a latent infection with Mycobacterium tuberculosis express high levels of Th1 cytokines and the IL-4 antagonist IL-4delta2. J Immunol 2004; 172:693843.
  • 49
    Demissie A, Leyten EM, Abebe M et al. Recognition of stage-specific mycobacterial antigens differentiates between acute and latent infections with Mycobacterium tuberculosis. Clin Vaccine Immunol 2006; 13:17986.
  • 50
    Fletcher HA, Owiafe P, Jeffries D et al. Increased expression of mRNA encoding interleukin (IL)-4 and its splice variant IL-4delta2 in cells from contacts of Mycobacterium tuberculosis, in the absence of in vitro stimulation. Immunology 2004; 112:66973.
  • 51
  • 52
    Ponnighaus JM, Fine PE, Sterne JA et al. Efficacy of BCG vaccine against leprosy and tuberculosis in northern Malawi. Lancet 1992; 339:6369.
  • 53
    Garly ML, Bale C, Martins CL, et al. BCG vaccination among West African infants is associated with less anergy to tuberculin and diphtheria–tetanus antigens. Vaccine 2001; 20:46874.
  • 54
    Roth A, Jensen H, Garly ML et al. Low birth weight infants and Calmette–Guerin bacillus vaccination at birth: community study from Guinea-Bissau. Pediatr Infect Dis J 2004; 23:54450.
  • 55
    Colditz GA, Brewer TF, Berkey CS et al. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA 1994; 271:698702.
  • 56
    Palmer CE, Long MW. Effects of infection with atypical mycobacteria on BCG vaccination and tuberculosis. Am Rev Respir Dis 1966; 94:55368.
  • 57
    Brandt L, Feino Cunha J, Weinreich Olsen A et al. Failure of the Mycobacterium bovis BCG vaccine: some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis. Infect Immun 2002; 70:6728.
  • 58
    Weir RE, Fine PE, Nazareth B et al. Interferon-gamma and skin test responses of schoolchildren in southeast England to purified protein derivatives from Mycobacterium tuberculosis and other species of mycobacteria. Clin Exp Immunol 2003; 134:28594.
  • 59
    Orme IM. Beyond BCG: the potential for a more effective TB vaccine. Mol Med Today 1999; 5:48792.
  • 60
    Soysal A, Millington KA, Bakir M et al. Effect of BCG vaccination on risk of Mycobacterium tuberculosis infection in children with household tuberculosis contact: a prospective community-based study. Lancet 2005; 366:144351.
  • 61
    Black GF, Weir RE, Floyd S et al. BCG-induced increase in interferon-gamma response to mycobacterial antigens and efficacy of BCG vaccination in Malawi and the UK: two randomised controlled studies. Lancet 2002; 359:1393401.
  • 62
    Smith SM, Malin AS, Pauline Lukey T et al. Characterization of human Mycobacterium bovis bacille Calmette–Guerin-reactive CD8+ T cells. Infect Immun 1999; 67:522330.
  • 63
    Worku S, Hoft DF. Differential effects of control and antigen-specific T cells on intracellular mycobacterial growth. Infect Immun 2003; 71:176373.
  • 64
    Hanekom WA. The immune response to BCG vaccination of newborns. Ann NY Acad Sci 2005; 1062:6978.
  • 65
    Hanekom WA, Gelderbloem S, Joseph S et al. Immune correlates of protection against TB following newborn vaccination with BCG. TB Vaccines for the World, Vienna meeting 2006.
  • 66
    Rodrigues LC, Pereira SM, Cunha SS et al. Effect of BCG revaccination on incidence of tuberculosis in school-aged children in Brazil: the BCG–REVAC cluster-randomised trial. Lancet 2005; 366:12905.
  • 67
    Schneider J, Gilbert SC, Blanchard TJ et al. Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat Med 1998; 4:397402.
  • 68
    McConkey SJ, Reece WH, Moorthy VS et al. Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat Med 2003; 9:72935.
  • 69
    McShane H, Brookes R, Gilbert SC, Hill AV. Enhanced immunogenicity of CD4(+) T-cell responses and protective efficacy of a DNA-modified vaccinia virus Ankara prime-boost vaccination regimen for murine tuberculosis. Infect Immun 2001; 69:6816.
  • 70
    Goonetilleke NP, McShane H, Hannan CM, Anderson RJ, Brookes RH, Hill AV. Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of bacille Calmette–Guerin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus Ankara. J Immunol 2003; 171:16029.
  • 71
    Williams A, Goonetilleke NP, McShane H et al. Boosting with poxviruses enhances Mycobacterium bovis BCG efficacy against tuberculosis in guinea pigs. Infect Immun 2005; 73:381416.
  • 72
    Grode L, Seiler P, Baumann S et al. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette–Guerin mutants that secrete listeriolysin. J Clin Invest 2005; 115:24729.
  • 73
    Horwitz MA. Recombinant BCG expressing Mycobacterium tuberculosis major extracellular proteins. Microbes Infect 2005; 7:94754.
  • 74
    Horwitz MA, Harth G. A new vaccine against tuberculosis affords greater survival after challenge than the current vaccine in the guinea pig model of pulmonary tuberculosis. Infect Immun 2003; 71:16729.
  • 75
    Skeiky YA, Sadoff JC. Advances in tuberculosis vaccine strategies. Nat Rev Microbiol 2006; 4:46976.
  • 76
    Pym AS, Brodin P, Majlessi L et al. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med 2003; 9:5339.
  • 77
    Pym AS, Brodin P, Brosch R, Huerre M, Cole ST. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol 2002; 46:70917.
  • 78
    Kamath AT, Fruth U, Brennan MJ et al. New live mycobacterial vaccines: the Geneva consensus on essential steps towards clinical development. Vaccine 2005; 23:375361.
  • 79
    Sambandamurthy VK, Derrick SC, Jalapathy KV et al. Long-term protection against tuberculosis following vaccination with a severely attenuated double lysine and pantothenate auxotroph of Mycobacterium tuberculosis. Infect Immun 2005; 73:1196203.
  • 80
    Sambandamurthy VK, Jacobs WR, Jr. Live attenuated mutants of Mycobacterium tuberculosis as candidate vaccines against tuberculosis. Microbes Infect 2005; 7:95561.
  • 81
    Sambandamurthy VK, Wang X, Chen B et al. A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat Med 2002; 8:11714.
  • 82
    Huygen K, Content J, Denis O et al. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine. Nat Med 1996; 2:8938.
  • 83
    Baldwin SL, D'Souza C, Roberts AD et al. Evaluation of new vaccines in the mouse and guinea pig model of tuberculosis. Infect Immun 1998; 66:29519.
  • 84
    Skjot RL, Brock I, Arend SM et al. Epitope mapping of the immunodominant antigen TB10.4 and the two homologous proteins TB10.3 and TB12.9, which constitute a subfamily of the esat-6 gene family. Infect Immun 2002; 70:544653.
  • 85
    Skjot RL, Oettinger T, Rosenkrands I et al. Comparative evaluation of low-molecular-mass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6 family as immunodominant T-cell antigens. Infect Immun 2000; 68:21420.
  • 86
    Alderson MR, Bement T, Day CH et al. Expression cloning of an immunodominant family of Mycobacterium tuberculosis antigens using human CD4(+) T cells. J Exp Med 2000; 191:55160.
  • 87
    Dillon DC, Alderson MR, Day CH et al. Molecular characterization and human T-cell responses to a member of a novel Mycobacterium tuberculosis mtb39 gene family. Infect Immun 1999; 67:294150.
  • 88
    Skeiky YA, Ovendale PJ, S Jen et al. T cell expression cloning of a Mycobacterium tuberculosis gene encoding a protective antigen associated with the early control of infection. J Immunol 2000; 165:71409.
  • 89
    Wang J, Thorson L, Stokes RW et al. Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J Immunol 2004; 173:635765.
  • 90
    Skeiky Y, Radosevic K, Vogels R et al. Development of a BCG prime-recombinant Ad35-tuberculosis booster vaccine strategy. TB Vaccines for the World, Vienna meeting 2006.
  • 91
    Nwanegbo E, Vardas E, Gao W, et al. Prevalence of neutralizing antibodies to adenoviral serotypes 5 and 35 in the adult populations of The Gambia, South Africa, and the United States. Clin Diagn Lab Immunol 2004; 1:3517.
  • 92
    Roberts DM, Nanda A, Havenga MJ et al. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature 2006; 44:23943.
  • 93
    Brandt L, Skeiky YA, Alderson MR et al. The protective effect of the Mycobacterium bovis BCG vaccine is increased by coadministration with the Mycobacterium tuberculosis 72-kilodalton fusion polyprotein Mtb72F in M. tuberculosis-infected guinea pigs. Infect Immun 2004; 72:662232.
  • 94
    Skeiky YA, Alderson MR, Ovendale PJ et al. Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein. J Immunol 2004; 172:761828.
  • 95
    Leroux-Roels I, Leroux-Roels G, Clement F et al. Safety and immunogenicity of the Mtb72F/ASO2A tuberculosis vaccine in PPD negative Belgian adults. TB Vaccines for the World, Vienna meeting 2006.
  • 96
    Olsen AW, Williams A, Okkels LM, Hatch G, Andersen P. Protective effect of a tuberculosis subunit vaccine based on a fusion of antigen 85B and ESAT-6 in the aerosol guinea pig model. Infect Immun 2004; 72:614850.
  • 97
    McShane H, Pathan AA, Sander CR et al. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat Med 2004; 10:12404.
  • 98
    Williams A, Hatch GJ, Clark SO et al. Evaluation of vaccines in the EU TB vaccine cluster using a guinea pig aerosol infection model of tuberculosis. Tuberculosis (Edinb) 2005; 85:2938.
  • 99
    Capuano SV III, Croix DA, Pawar S et al. Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect Immun 2003; 71:583144.
  • 100
    Hewinson RG, Vordermeier HM, Buddle BM. Use of the bovine model of tuberculosis for the development of improved vaccines and diagnostics. Tuberculosis (Edinb) 2003; 83:11930.
  • 101
    Kraft SL, Dailey D, Kovach M et al. Magnetic resonance imaging of pulmonary lesions in guinea pigs infected with Mycobacterium tuberculosis. Infect Immun 2004; 72:596371.
  • 102
    McCune RM, Feldmann FM, Lambert HP, McDermott W. Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues. J Exp Med 1966; 123:44568.
  • 103
    McCune RM, Feldmann FM, McDermott W. Microbial persistence. II. Characteristics of the sterile state of tubercle bacilli. J Exp Med 1966; 123:46986.
  • 104
    Rees RJ, Hart PD. Analysis of the host-parasite equilibrium in chronic murine tuberculosis by total and viable bacillary counts. Br J Exp Pathol 1961; 42:838.
  • 105
    Botha T, Ryffel B. Reactivation of latent tuberculosis by an inhibitor of inducible nitric oxide synthase in an aerosol murine model. Immunology 2002; 107:3507.
  • 106
    Scanga CA, Mohan VP, Joseph H, Yu K, Chan J, Flynn JL. Reactivation of latent tuberculosis: variations on the Cornell murine model. Infect Immun 1999; 67:45318.
  • 107
    Elias D, Akuffo H, Thors C, Pawlowski A, Britton S. Low dose chronic Schistosoma mansoni infection increases susceptibility to Mycobacterium bovis BCG infection in mice. Clin Exp Immunol 2005; 139:398404.
  • 108
  • 109
    Koch R. Forsetzung der Mitteilungen uber ein Heilmittel gegen Tuberkulose. Dtsch Med Wochenschr 1891; 17:1012.
  • 110
    Taylor JL, Turner OC, Basaraba RJ, Belisle JT, Huygen K, Orme IM. Pulmonary necrosis resulting from DNA vaccination against tuberculosis. Infect Immun 2003; 71:21928.
  • 111
    McShane H, Pathan AA, Sander CR, Goonetilleke NP, Fletcher HA, Hill AV. Boosting BCG with MVA85A: the first candidate subunit vaccine for tuberculosis in clinical trials. Tuberculosis (Edinb) 2005; 85:4752.
  • 112
    Gorak-Stolinska P, Weir RE, Floyd S et al. Immunogenicity of Danish-SSI 1331 BCG vaccine in the UK: comparison with Glaxo-Evans 1077 BCG vaccine. Vaccine 2006; 24:572633.
  • 113
    Hanekom WA, Hughes J, Mavinkurve M et al. Novel application of a whole blood intracellular cytokine detection assay to quantitate specific T-cell frequency in field studies. J Immunol Meth 2004; 291:18595.